Visible node/edge number:
Node colors:
Node labels:

show label of nodes with degree >=

Node sizes:
Edge colors:
Edge widths factor:
Layout:

gravity >=

edgeLength =

GRN in network:

Notice: IE browser need to manually refresh (F5) this page after resetting the network.

This regulatory network was inferred from the input dataset. The miRNAs and mRNAs are presented as round and rectangle nodes respectively. The numerical value popped up upon mouse over the gene node is the log2 transformed fold-change of the gene expression between the two groups. All of the nodes are clickable, and the detailed information of the miRNAs/mRNAs and related cancer pathway will be displayed in another window. The edges between nodes are supported by both interactions (predicted or experimentally verified) and correlations learnt from cancer dataset. The numerical value popped up upon mouse over the edge is the correlation beat value (effect size) between the two nodes. The experimental evidences of the edges reported in previous cancer studies are highlighted by red/orange color. All of these information can be accessed by the "mouse-over" action. This network shows a full map of the miRNA-mRNA regulation of the input gene list(s), and the hub miRNAs (with the high network degree/betweenness centrality) would be the potential cancer drivers or tumor suppressors. The full result table can be accessed in the "Regulations" tab.

"miRNACancerMAP" is also a network visualization tool for users to draw their regulatory network by personal customization. Users can set the complexity of the network by limiting the number of nodes or edges. And the color of the nodes can be defined by different categories of the mRNAs and miRNAs, such as Gene-Ontology, pathway, and expression status. Users can also select to use network degree or network betweenness centrality to define the node size. And edges can be black or colored by the correlation. Purple edge means negative correlation (mostly found between miRNA and mRNA), and blue edge means positive correlation (found in PPI or miRNA-miRNA sponge effect). We can also add the protein-protein interactions (PPI) into the network. This result will show the cluster of genes regulated by some specific miRNAs. Additionally, miRNA-miRNA edges can be added by the "miRNA sponge" button, presenting some clusters of miRNAs that have the interactions via sponge effect.

miRNA-gene regulations

(Download full result)

Num microRNA           Gene miRNA log2FC miRNA pvalue Gene log2FC Gene pvalue Interaction Correlation beta Correlation P-value PMID Reported in cancer studies
1 hsa-miR-155-5p ACTA1 -0.32 0.67318 0.68 0.22496 MirTarget; miRNATAP -0.31 0.00084 NA
2 hsa-miR-155-5p AHRR -0.32 0.67318 -0.45 0.15751 MirTarget -0.13 0.02385 NA
3 hsa-miR-155-5p ANO5 -0.32 0.67318 -0.52 0.23338 MirTarget -0.31 0.00017 NA
4 hsa-miR-155-5p ARL10 -0.32 0.67318 -0.39 0.12807 miRNAWalker2 validate -0.13 0.00767 NA
5 hsa-miR-155-5p ATRNL1 -0.32 0.67318 0.32 0.59427 MirTarget; mirMAP -0.79 0 NA
6 hsa-miR-155-5p BDNF -0.32 0.67318 -0.53 0.1379 miRNATAP -0.15 0.02622 NA
7 hsa-miR-155-5p C1QL2 -0.32 0.67318 -0.86 0.18725 miRNATAP -0.26 0.01554 NA
8 hsa-miR-155-5p CAB39L -0.32 0.67318 0.46 0.20249 miRNAWalker2 validate -0.12 0.00272 NA
9 hsa-miR-155-5p CARD10 -0.32 0.67318 -0.35 0.4043 MirTarget -0.15 0.00236 NA
10 hsa-miR-155-5p CCND1 -0.32 0.67318 -0.04 0.9587 miRNAWalker2 validate -0.22 0.00251 26955820 MicroRNA 155 expression inversely correlates with pathologic stage of gastric cancer and it inhibits gastric cancer cell growth by targeting cyclin D1
11 hsa-miR-155-5p CHST9 -0.32 0.67318 -0.11 0.87995 miRNATAP -0.41 0.00277 NA
12 hsa-miR-155-5p CLDN8 -0.32 0.67318 0.69 0.35896 MirTarget -0.6 0 NA
13 hsa-miR-155-5p CNTN3 -0.32 0.67318 0.64 0.28014 MirTarget -0.32 0.00396 NA
14 hsa-miR-155-5p DACH2 -0.32 0.67318 -1.88 0.01349 mirMAP -0.35 0.00821 NA
15 hsa-miR-155-5p DYNC1I1 -0.32 0.67318 0.74 0.05878 MirTarget; miRNATAP -0.22 0.0042 NA
16 hsa-miR-155-5p DYNC2H1 -0.32 0.67318 0.44 0.22236 miRNAWalker2 validate -0.11 0.01069 NA
17 hsa-miR-155-5p EEF1A2 -0.32 0.67318 0.53 0.44481 miRNAWalker2 validate -0.39 0.00372 NA
18 hsa-miR-155-5p ENTPD3 -0.32 0.67318 0.62 0.14444 MirTarget -0.15 0.04652 NA
19 hsa-miR-155-5p ETNK2 -0.32 0.67318 -0.06 0.88513 miRNATAP -0.17 7.0E-5 NA
20 hsa-miR-155-5p FGF9 -0.32 0.67318 -0.06 0.91069 miRNATAP -0.61 0 NA
21 hsa-miR-155-5p FIGN -0.32 0.67318 0.05 0.91019 mirMAP -0.14 0.04482 NA
22 hsa-miR-155-5p FLRT2 -0.32 0.67318 0.39 0.40703 mirMAP -0.16 0.02724 NA
23 hsa-miR-155-5p FOXP4 -0.32 0.67318 -0.27 0.69437 mirMAP -0.1 0.02846 NA
24 hsa-miR-155-5p GATM -0.32 0.67318 0.1 0.82038 miRNAWalker2 validate -0.19 0.00021 NA
25 hsa-miR-155-5p GDPD1 -0.32 0.67318 0.07 0.78445 MirTarget -0.18 0.00041 NA
26 hsa-miR-155-5p GNAS -0.32 0.67318 0.13 0.89141 miRNAWalker2 validate; MirTarget -0.13 0 NA
27 hsa-miR-155-5p GRIP1 -0.32 0.67318 -0.35 0.35973 miRNATAP -0.17 0.00447 NA
28 hsa-miR-155-5p HSPA4L -0.32 0.67318 0.17 0.62992 miRNAWalker2 validate -0.21 0.00181 NA
29 hsa-miR-155-5p IGDCC4 -0.32 0.67318 -0.2 0.59831 MirTarget -0.34 0 NA
30 hsa-miR-155-5p IGF1R -0.32 0.67318 0.18 0.77996 mirMAP -0.13 0.01272 NA
31 hsa-miR-155-5p IL17RD -0.32 0.67318 -0.08 0.87096 mirMAP -0.14 0.00955 NA
32 hsa-miR-155-5p INA -0.32 0.67318 -0.39 0.48595 miRNAWalker2 validate -0.24 0.02626 NA
33 hsa-miR-155-5p KDM5B -0.32 0.67318 0.05 0.93707 MirTarget -0.14 2.0E-5 NA
34 hsa-miR-155-5p KRAS -0.32 0.67318 0.01 0.98017 miRNAWalker2 validate; miRNATAP -0.12 0.00602 NA
35 hsa-miR-155-5p LCA5 -0.32 0.67318 0.21 0.51761 MirTarget -0.14 7.0E-5 NA
36 hsa-miR-155-5p MAP4K3 -0.32 0.67318 0.24 0.61905 MirTarget -0.11 0 NA
37 hsa-miR-155-5p MED12L -0.32 0.67318 0.22 0.56175 miRNATAP -0.18 0.01314 NA
38 hsa-miR-155-5p MEST -0.32 0.67318 0.06 0.93011 miRNAWalker2 validate -0.21 0.00018 NA
39 hsa-miR-155-5p MEX3B -0.32 0.67318 0.06 0.85358 miRNATAP -0.22 2.0E-5 NA
40 hsa-miR-155-5p MMP16 -0.32 0.67318 -0.38 0.29717 mirMAP -0.15 0.0288 NA
41 hsa-miR-155-5p MPP2 -0.32 0.67318 0.09 0.80743 miRNAWalker2 validate -0.2 0.00096 NA
42 hsa-miR-155-5p MSI2 -0.32 0.67318 -0.08 0.82643 miRNAWalker2 validate -0.11 0.00025 NA
43 hsa-miR-155-5p NES -0.32 0.67318 -0.32 0.52183 miRNAWalker2 validate -0.16 0.00127 NA
44 hsa-miR-155-5p NOVA1 -0.32 0.67318 0.11 0.80837 miRNAWalker2 validate; miRNATAP -0.44 0 NA
45 hsa-miR-155-5p NR2F2 -0.32 0.67318 -0.16 0.78608 miRNATAP -0.1 0.00637 NA
46 hsa-miR-155-5p OGN -0.32 0.67318 0.98 0.07787 miRNATAP -0.24 0.01663 NA
47 hsa-miR-155-5p PACSIN3 -0.32 0.67318 -0.07 0.89105 miRNAWalker2 validate -0.18 4.0E-5 NA
48 hsa-miR-155-5p PANK1 -0.32 0.67318 -0.03 0.94547 miRNATAP -0.11 0.00374 NA
49 hsa-miR-155-5p PEG3 -0.32 0.67318 -0.86 0.17776 miRNATAP -0.57 0 NA
50 hsa-miR-155-5p PGAP1 -0.32 0.67318 -0.03 0.93261 mirMAP -0.14 0.00032 NA
51 hsa-miR-155-5p PGR -0.32 0.67318 0.81 0.19558 mirMAP -0.32 0.0058 20388420; 19454029; 23162645 It's indicated that the up-regulation of miR-155 expression was associated with advanced TNM clinical stage median 0.316 0.358 and 0.417 respectively for stage I II and III tumor P = 0.002 lymph node metastasis median 0.383 and 0.355 respectively for cases with positive and negative lymph nodes P = 0.034 higher proliferation index median 0.387 and 0.353 respectively for cases with high proliferation index Ki67 > 10% and low proliferation index Ki67 ≤ 10% P = 0.019 estrogen receptor-positive 0.367 and 0.318 respectively for cases with positive estrogen receptor and negative group P = 0.041 and progesterone receptor-positive 0.398 and 0.335 respectively for cases with positive progesterone receptor and negative group P = 0.029 in patients with breast cancer; The expression of miR-155 is up-regulated in primary breast cancer especially in patients with positive estrogen and progesterone receptor;While the expression of all three miRNAs was similar in samples from healthy women compared to those with breast cancer women with progesterone receptor PR p = 0.016 positive tumors had higher miR-155 expression than tumors that were negative for these receptors;miR 155 and miR 31 are differentially expressed in breast cancer patients and are correlated with the estrogen receptor and progesterone receptor status; The expression levels of miR-155 but not miR-31 were inversely correlated with estrogen receptor ER and progesterone receptor PR expression ER r=-0.353 P=0.003; PR r=-0.357 P=0.003
52 hsa-miR-155-5p PLEKHA5 -0.32 0.67318 -0.08 0.85824 miRNAWalker2 validate -0.1 0.00335 NA
53 hsa-miR-155-5p PPM1L -0.32 0.67318 0.06 0.83366 mirMAP -0.15 0.00746 NA
54 hsa-miR-155-5p PRRG3 -0.32 0.67318 -0.44 0.46451 mirMAP -0.32 0.00232 NA
55 hsa-miR-155-5p RAB11FIP2 -0.32 0.67318 0.41 0.39042 miRNAWalker2 validate; MirTarget; miRNATAP -0.16 0 NA
56 hsa-miR-155-5p RAPGEF4 -0.32 0.67318 -0.45 0.07612 miRNATAP -0.12 0.00342 NA
57 hsa-miR-155-5p SALL1 -0.32 0.67318 0.28 0.65757 miRNATAP -0.61 0 NA
58 hsa-miR-155-5p SATB1 -0.32 0.67318 0.17 0.72112 MirTarget; miRNATAP -0.22 0.00029 NA
59 hsa-miR-155-5p SCML2 -0.32 0.67318 -0.13 0.67403 mirMAP -0.13 0.00687 NA
60 hsa-miR-155-5p SEC14L5 -0.32 0.67318 0.04 0.90663 miRNATAP -0.36 0 NA
61 hsa-miR-155-5p SH3BP4 -0.32 0.67318 -0.06 0.92912 miRNAWalker2 validate -0.1 0.01691 NA
62 hsa-miR-155-5p SIM2 -0.32 0.67318 -0.52 0.30039 miRNATAP -0.3 0.00182 NA
63 hsa-miR-155-5p SLC20A2 -0.32 0.67318 -0 0.99716 miRNATAP -0.1 0.0009 NA
64 hsa-miR-155-5p SMAD9 -0.32 0.67318 -0.23 0.49449 mirMAP -0.2 0.00137 NA
65 hsa-miR-155-5p SNED1 -0.32 0.67318 -0.26 0.57987 mirMAP -0.17 0.00139 NA
66 hsa-miR-155-5p SORCS1 -0.32 0.67318 1.3 0.10393 MirTarget -0.37 0.0168 NA
67 hsa-miR-155-5p SOX11 -0.32 0.67318 0.94 0.26156 miRNATAP -0.55 0.00079 NA
68 hsa-miR-155-5p SOX6 -0.32 0.67318 -0.35 0.4587 miRTarBase; miRNATAP -0.19 0.0116 21989846 Ectopic expression of sex-determining region Y box 6 SOX6 was able to reverse the growth-promoting property of miR-155; Concordantly the results demonstrated for the first time that SOX6 is a direct target of miR-155; In addition a decline in p21waf1/cip1 expression caused by miR-155 could be reversed by SOX6 expression; The current data indicated that SOX6 is a novel target of miR-155 and that miR-155 enhances liver cell tumorigenesis at least in part through the novel miR-155/SOX6/p21waf1/cip1 axis
69 hsa-miR-155-5p SOX9 -0.32 0.67318 0.34 0.57504 miRNATAP -0.14 0.01283 NA
70 hsa-miR-155-5p ST8SIA3 -0.32 0.67318 0.41 0.59717 mirMAP -0.31 0.01334 NA
71 hsa-miR-155-5p STOX2 -0.32 0.67318 -0.22 0.44405 mirMAP -0.2 4.0E-5 NA
72 hsa-miR-155-5p STXBP5L -0.32 0.67318 -0.84 0.07835 miRNATAP -0.18 0.03581 NA
73 hsa-miR-155-5p TMEM132B -0.32 0.67318 -0.11 0.83184 mirMAP -0.23 0.0199 NA
74 hsa-miR-155-5p TRIM2 -0.32 0.67318 0.13 0.80027 miRNATAP -0.18 0.00011 NA
75 hsa-miR-155-5p TSPAN5 -0.32 0.67318 -0.13 0.66861 MirTarget -0.12 0.01853 NA
76 hsa-miR-155-5p UGDH -0.32 0.67318 0.19 0.69988 miRNAWalker2 validate -0.1 0.0001 NA
77 hsa-miR-155-5p UNC80 -0.32 0.67318 -0.2 0.71626 MirTarget -0.53 0 NA
78 hsa-miR-155-5p VAV2 -0.32 0.67318 -0.41 0.42761 miRNAWalker2 validate -0.15 0.00052 NA
79 hsa-miR-155-5p WNT5A -0.32 0.67318 0.21 0.67651 miRNAWalker2 validate; mirMAP -0.15 0.00991 NA
80 hsa-miR-155-5p ZC3H12B -0.32 0.67318 -0.36 0.219 mirMAP -0.12 0.02744 NA
81 hsa-miR-155-5p ZNF518B -0.32 0.67318 -0.36 0.43527 MirTarget; miRNATAP -0.16 0.00108 NA
82 hsa-miR-155-5p ZNF677 -0.32 0.67318 -0.07 0.79759 mirMAP -0.12 0.00737 NA
83 hsa-miR-155-5p ZNF709 -0.32 0.67318 0.17 0.64315 mirMAP -0.16 0.0002 NA
84 hsa-miR-155-5p ZNF880 -0.32 0.67318 -0.38 0.27286 MirTarget -0.11 0.0132 NA
NumGOOverlapSizeP ValueAdj. P Value
1 EMBRYO DEVELOPMENT 16 894 8.168e-07 0.001267
2 APPENDAGE DEVELOPMENT 8 169 5.561e-07 0.001267
3 LIMB DEVELOPMENT 8 169 5.561e-07 0.001267
4 DEVELOPMENTAL GROWTH INVOLVED IN MORPHOGENESIS 6 104 5.003e-06 0.00582
5 REPRODUCTIVE SYSTEM DEVELOPMENT 10 408 8.047e-06 0.007488
NumGOOverlapSizeP ValueAdj. P Value
1 NUCLEIC ACID BINDING TRANSCRIPTION FACTOR ACTIVITY 18 1199 1.915e-06 0.001779
NumGOOverlapSizeP ValueAdj. P Value

Over-represented Pathway

NumPathwayPathviewOverlapSizeP ValueAdj. P Value
1 Rap1_signaling_pathway_hsa04015 6 206 0.0002314 0.01203
2 cAMP_signaling_pathway_hsa04024 5 198 0.001482 0.03854
3 Signaling_pathways_regulating_pluripotency_of_stem_cells_hsa04550 4 139 0.002805 0.04861
4 mTOR_signaling_pathway_hsa04150 4 151 0.003774 0.04906
5 MAPK_signaling_pathway_hsa04010 5 295 0.008076 0.08399
6 AMPK_signaling_pathway_hsa04152 3 121 0.01443 0.1049
7 PI3K_Akt_signaling_pathway_hsa04151 5 352 0.01634 0.1049
8 Ras_signaling_pathway_hsa04014 4 232 0.01653 0.1049
9 FoxO_signaling_pathway_hsa04068 3 132 0.01816 0.1049
10 Phospholipase_D_signaling_pathway_hsa04072 3 146 0.02363 0.1229
11 Focal_adhesion_hsa04510 3 199 0.05145 0.229
12 Gap_junction_hsa04540 2 88 0.05289 0.229
13 Regulation_of_actin_cytoskeleton_hsa04810 3 208 0.05726 0.229
14 Oocyte_meiosis_hsa04114 2 124 0.0958 0.3503
15 Autophagy_animal_hsa04140 2 128 0.101 0.3503
16 Apelin_signaling_pathway_hsa04371 2 137 0.1131 0.3676
17 Wnt_signaling_pathway_hsa04310 2 146 0.1255 0.3744
18 Phagosome_hsa04145 2 152 0.134 0.3744
19 Hippo_signaling_pathway_hsa04390 2 154 0.1368 0.3744
20 Cellular_senescence_hsa04218 2 160 0.1454 0.3781
21 Tight_junction_hsa04530 2 170 0.16 0.3963
22 Endocytosis_hsa04144 2 244 0.2734 0.5266

Quest ID: 53fafb3af4debf5a0b3aac7c666c72b4