Visible node/edge number:
Node colors:
Node labels:

show label of nodes with degree >=

Node sizes:
Edge colors:
Edge widths factor:
Layout:

gravity >=

edgeLength =

GRN in network:

Notice: IE browser need to manually refresh (F5) this page after resetting the network.

This regulatory network was inferred from the input dataset. The miRNAs and mRNAs are presented as round and rectangle nodes respectively. The numerical value popped up upon mouse over the gene node is the log2 transformed fold-change of the gene expression between the two groups. All of the nodes are clickable, and the detailed information of the miRNAs/mRNAs and related cancer pathway will be displayed in another window. The edges between nodes are supported by both interactions (predicted or experimentally verified) and correlations learnt from cancer dataset. The numerical value popped up upon mouse over the edge is the correlation beat value (effect size) between the two nodes. The experimental evidences of the edges reported in previous cancer studies are highlighted by red/orange color. All of these information can be accessed by the "mouse-over" action. This network shows a full map of the miRNA-mRNA regulation of the input gene list(s), and the hub miRNAs (with the high network degree/betweenness centrality) would be the potential cancer drivers or tumor suppressors. The full result table can be accessed in the "Regulations" tab.

"miRNACancerMAP" is also a network visualization tool for users to draw their regulatory network by personal customization. Users can set the complexity of the network by limiting the number of nodes or edges. And the color of the nodes can be defined by different categories of the mRNAs and miRNAs, such as Gene-Ontology, pathway, and expression status. Users can also select to use network degree or network betweenness centrality to define the node size. And edges can be black or colored by the correlation. Purple edge means negative correlation (mostly found between miRNA and mRNA), and blue edge means positive correlation (found in PPI or miRNA-miRNA sponge effect). We can also add the protein-protein interactions (PPI) into the network. This result will show the cluster of genes regulated by some specific miRNAs. Additionally, miRNA-miRNA edges can be added by the "miRNA sponge" button, presenting some clusters of miRNAs that have the interactions via sponge effect.

miRNA-gene regulations

(Download full result)

Num microRNA           Gene miRNA log2FC miRNA pvalue Gene log2FC Gene pvalue Interaction Correlation beta Correlation P-value PMID Reported in cancer studies
1 hsa-miR-30d-3p ATM -0.12 0.32955 -0.24 0.01738 mirMAP -0.14 0.00043 24345332 miR-30d has been observed to be significantly down-regulated in human anaplastic thyroid carcinoma ATC and is believed to be an important event in thyroid cell transformation; In this study we found that miR-30d has a critical role in modulating sensitivity of ATC cells to cisplatin a commonly used chemotherapeutic drug for treatment of this neoplasm; Using a mimic of miR-30d we demonstrated that miR-30d could negatively regulate the expression of beclin 1 a key autophagy gene leading to suppression of the cisplatin-activated autophagic response that protects ATC cells from apoptosis; We further showed that inhibition of the beclin 1-mediated autophagy by the miR-30d mimic sensitized ATC cells to cisplatin both in vitro cell culture and in vivo animal xenograft model; These results suggest that dysregulation of miR-30d in ATC cells is responsible for the insensitivity to cisplatin by promoting autophagic survival; Thus miR-30d may be exploited as a potential target for therapeutic intervention in the treatment of ATC
2 hsa-miR-339-5p ATM 0.28 0.03557 -0.24 0.01738 miRanda -0.1 0.00399 NA
3 hsa-miR-455-5p ATM -0.27 0.05813 -0.24 0.01738 miRanda -0.12 0.00045 NA
4 hsa-miR-30a-5p BAX -0.63 0.00011 0.8 0 miRNAWalker2 validate -0.12 0.00058 NA
5 hsa-miR-365a-3p BAX 0.16 0.15325 0.8 0 miRNAWalker2 validate -0.23 0 24216611 MiR 365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro apoptotic regulator BAX
6 hsa-let-7a-2-3p BBC3 -1.19 0 0.8 0 MirTarget -0.19 0 NA
7 hsa-let-7g-3p BBC3 -1.14 0 0.8 0 MirTarget; miRNATAP -0.18 0.0001 NA
8 hsa-miR-101-3p BBC3 -1.48 0 0.8 0 miRNATAP -0.32 0 NA
9 hsa-miR-125b-5p BBC3 -1.36 0 0.8 0 miRNAWalker2 validate; miRTarBase -0.25 0 25184537 Thus far two of these target genes BBC3 and NEU1 that are tumor suppressor genes but not yet studied in PDAC appear to be functional targets of miR-125b since knockdown of miR125b caused their up regulation
10 hsa-miR-139-5p BBC3 -2.11 0 0.8 0 miRNATAP -0.23 0 NA
11 hsa-miR-140-5p BBC3 -0.22 0.01407 0.8 0 miRNATAP -0.25 0.0003 NA
12 hsa-miR-144-3p BBC3 -2.98 0 0.8 0 miRNATAP -0.11 0 NA
13 hsa-miR-27b-3p BBC3 -0.82 0 0.8 0 miRNATAP -0.2 0.00022 NA
14 hsa-miR-345-5p BBC3 -0.71 0 0.8 0 miRNATAP -0.17 4.0E-5 NA
15 hsa-miR-590-3p BBC3 -0.47 2.0E-5 0.8 0 miRanda -0.25 1.0E-5 NA
16 hsa-miR-140-5p BID -0.22 0.01407 0.21 0.07516 miRanda -0.21 0.00101 NA
17 hsa-let-7g-5p CASP3 -0.46 2.0E-5 0.31 0.00047 MirTarget; miRNATAP -0.11 0.00694 NA
18 hsa-miR-374b-5p CASP3 -0.31 0.00301 0.31 0.00047 mirMAP -0.14 0.00058 NA
19 hsa-miR-455-5p CASP8 -0.27 0.05813 0.33 0.00029 miRanda -0.15 0 NA
20 hsa-miR-542-3p CASP8 -1.31 0 0.33 0.00029 miRanda -0.13 4.0E-5 NA
21 hsa-let-7b-5p CCNB1 -0.96 0 3.16 0 miRNAWalker2 validate -0.54 0 NA
22 hsa-miR-139-5p CCNB1 -2.11 0 3.16 0 miRanda -0.8 0 NA
23 hsa-let-7a-5p CCNB2 -0.33 0.00046 4.24 0 miRNAWalker2 validate -0.45 0.00714 NA
24 hsa-let-7b-5p CCNB2 -0.96 0 4.24 0 miRNAWalker2 validate -0.59 0 NA
25 hsa-let-7c-5p CCNB2 -1.71 0 4.24 0 miRNAWalker2 validate -0.85 0 NA
26 hsa-miR-23b-3p CCNB2 -0.53 0 4.24 0 miRNAWalker2 validate -0.64 1.0E-5 NA
27 hsa-miR-339-5p CCNB3 0.28 0.03557 0.19 0.27484 miRanda -0.21 0.00149 NA
28 hsa-miR-106a-5p CCND1 -0.46 0.00972 -0.9 1.0E-5 MirTarget; miRNATAP -0.26 0 NA
29 hsa-miR-106b-5p CCND1 0.65 0 -0.9 1.0E-5 miRNAWalker2 validate; miRTarBase; MirTarget; miRNATAP -0.43 0 NA
30 hsa-miR-1266-5p CCND1 1.63 0 -0.9 1.0E-5 MirTarget -0.23 0 NA
31 hsa-miR-15b-5p CCND1 0.23 0.08248 -0.9 1.0E-5 miRNAWalker2 validate; miRTarBase; MirTarget; miRNATAP -0.54 0 NA
32 hsa-miR-16-5p CCND1 -0.4 0.0001 -0.9 1.0E-5 miRNAWalker2 validate; miRTarBase; MirTarget; miRNATAP -0.31 0.00178 23991964; 22922827; 18483394 At the molecular level our results further revealed that cyclin D1 expression was negatively regulated by miR-16;CCND1 has been found to be a target of miR-15a and miR-16-1 through analysis of complementary sequences between microRNAs and CCND1 mRNA; Moreover the transcription of CCND1 is suppressed by miR-15a and miR-16-1 via direct binding to the CCND1 3'-untranslated region 3'-UTR;Truncation in CCND1 mRNA alters miR 16 1 regulation in mantle cell lymphoma; Furthermore we demonstrated that this truncation alters miR-16-1 binding sites and through the use of reporter constructs we were able to show that miR-16-1 regulates CCND1 mRNA expression; This study introduces the role of miR-16-1 in the regulation of CCND1 in MCL
33 hsa-miR-17-5p CCND1 0.7 2.0E-5 -0.9 1.0E-5 miRNAWalker2 validate; MirTarget; TargetScan; miRNATAP -0.34 0 26431674 Bioinformatics Prediction and In Vitro Analysis Revealed That miR 17 Targets Cyclin D1 mRNA in Triple Negative Breast Cancer Cells; In this study using bioinformatic analyses miR-17 was selected as it targets the 3'UTR of CCND1 gene with the highest score; After lentiviral transduction of miR-17 to the target cells gene expression analysis showed decreased expression of CCND1 gene
34 hsa-miR-186-5p CCND1 -0.06 0.53529 -0.9 1.0E-5 mirMAP -0.32 0.00286 NA
35 hsa-miR-19a-3p CCND1 1.02 0 -0.9 1.0E-5 miRNAWalker2 validate; miRTarBase; miRNATAP -0.28 0 25985117 Moreover miR-19a might play inhibitory roles in HCC malignancy via regulating Cyclin D1 expression
36 hsa-miR-19b-1-5p CCND1 -0.28 0.07831 -0.9 1.0E-5 miRNAWalker2 validate; miRTarBase -0.31 0 NA
37 hsa-miR-19b-3p CCND1 0.6 0.00017 -0.9 1.0E-5 miRNATAP -0.34 0 NA
38 hsa-miR-20a-5p CCND1 0.85 0 -0.9 1.0E-5 miRNAWalker2 validate; miRTarBase; MirTarget; miRNATAP -0.33 0 NA
39 hsa-miR-20b-5p CCND1 0.46 0.02859 -0.9 1.0E-5 MirTarget; miRNATAP -0.23 0 NA
40 hsa-miR-340-5p CCND1 -0 0.9685 -0.9 1.0E-5 mirMAP -0.32 0.00013 NA
41 hsa-miR-425-5p CCND1 0.59 2.0E-5 -0.9 1.0E-5 miRNAWalker2 validate -0.39 0 NA
42 hsa-miR-503-5p CCND1 0.19 0.26842 -0.9 1.0E-5 miRNAWalker2 validate; miRTarBase; MirTarget -0.16 0.00815 26047605; 23731275 MiR 503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression; Overexpression of miR-503 in breast cancer cell lines reduced cell proliferation through inducing G0/G1 cell cycle arrest by targeting CCND1;MicroRNA 503 suppresses proliferation and cell cycle progression of endometrioid endometrial cancer by negatively regulating cyclin D1; CCND1 has a binding sequence of miR-503 within its 3' untranslated region and was confirmed to be a direct target of miR-503 by the fluorescent reporter assays; Increasing the miR-503 level in EEC cells suppressed cell viability colon formation activity and cell-cycle progression and the inhibited oncogenic phenotypes induced by miR-503 were alleviated by ectopic expression of CCND1 without the untranslated region sequence; Collectively this study suggested that miR-503 plays a tumor-suppressor role by targeting CCND1; Abnormal suppression of miR-503 leads to an increase in the CCND1 level which may promote carcinogenesis and progression of EEC
43 hsa-miR-589-3p CCND1 1.17 0 -0.9 1.0E-5 MirTarget -0.18 0.00124 NA
44 hsa-miR-616-5p CCND1 0.15 0.40284 -0.9 1.0E-5 mirMAP -0.26 1.0E-5 NA
45 hsa-miR-7-1-3p CCND1 -0.57 2.0E-5 -0.9 1.0E-5 mirMAP -0.26 0.00057 NA
46 hsa-miR-9-5p CCND1 1.26 9.0E-5 -0.9 1.0E-5 miRNAWalker2 validate -0.14 1.0E-5 NA
47 hsa-miR-92a-3p CCND1 0.21 0.13429 -0.9 1.0E-5 miRNAWalker2 validate -0.41 0 NA
48 hsa-miR-93-5p CCND1 1.4 0 -0.9 1.0E-5 miRNAWalker2 validate; MirTarget; miRNATAP -0.34 0 NA
49 hsa-miR-942-5p CCND1 0.35 0.02833 -0.9 1.0E-5 MirTarget -0.25 0.00012 NA
50 hsa-miR-130b-5p CCND2 0.17 0.33761 0.36 0.03656 mirMAP -0.17 0.00018 NA
51 hsa-miR-20a-5p CCND2 0.85 0 0.36 0.03656 miRNAWalker2 validate; miRTarBase; miRNATAP -0.16 0.00121 NA
52 hsa-miR-28-5p CCND2 -0.43 0 0.36 0.03656 miRanda -0.48 0 NA
53 hsa-miR-33a-3p CCND2 -0.68 1.0E-5 0.36 0.03656 MirTarget -0.26 0 NA
54 hsa-miR-3607-3p CCND2 -2.16 0 0.36 0.03656 mirMAP -0.12 0.0007 NA
55 hsa-miR-378a-3p CCND2 -1.19 0 0.36 0.03656 miRNAWalker2 validate -0.18 2.0E-5 NA
56 hsa-miR-548v CCND2 -0.27 0.17626 0.36 0.03656 MirTarget -0.15 0.00034 NA
57 hsa-miR-616-5p CCND2 0.15 0.40284 0.36 0.03656 mirMAP -0.32 0 NA
58 hsa-miR-618 CCND2 0.14 0.51715 0.36 0.03656 mirMAP -0.23 0 NA
59 hsa-miR-27b-3p CCND3 -0.82 0 0.08 0.47843 miRNAWalker2 validate -0.24 0 NA
60 hsa-miR-320a CCND3 0.33 0.02214 0.08 0.47843 miRanda -0.12 0.00135 NA
61 hsa-miR-125b-5p CCNE1 -1.36 0 3.05 0 miRNAWalker2 validate -0.8 0 NA
62 hsa-miR-192-5p CCNE1 -0.5 0.00345 3.05 0 miRNAWalker2 validate -0.35 2.0E-5 NA
63 hsa-miR-195-5p CCNE1 -1.86 0 3.05 0 miRNAWalker2 validate; MirTarget; miRNATAP -0.3 4.0E-5 24402230 Furthermore through qPCR and western blot assays we showed that overexpression of miR-195-5p reduced CCNE1 mRNA and protein levels respectively
64 hsa-miR-26a-5p CCNE1 -0.96 0 3.05 0 miRNAWalker2 validate; miRTarBase; miRNATAP -0.6 2.0E-5 22094936 Cell cycle regulation and CCNE1 and CDC2 were the only significant overlapping pathway and genes differentially expressed between tumors with high and low levels of miR-26a and EZH2 respectively; Low mRNA levels of EZH2 CCNE1 and CDC2 and high levels of miR-26a are associated with favorable outcome on tamoxifen
65 hsa-miR-26b-5p CCNE1 -1.11 0 3.05 0 miRNAWalker2 validate; miRTarBase; miRNATAP -0.89 0 NA
66 hsa-miR-424-5p CCNE1 -2.63 0 3.05 0 miRNAWalker2 validate; miRTarBase; MirTarget; miRNATAP -0.37 0 NA
67 hsa-miR-497-5p CCNE1 -1.41 0 3.05 0 MirTarget; miRNATAP -0.27 0.00125 24112607; 25909221; 24909281 Western blot assays confirmed that overexpression of miR-497 reduced cyclin E1 protein levels; Inhibited cellular growth suppressed cellular migration and invasion and G1 cell cycle arrest were observed upon overexpression of miR-497 in cells possibly by targeting cyclin E1;The effect of simultaneous overexpression of miR-497 and miR-34a on the inhibition of cell proliferation colony formation and tumor growth and the downregulation of cyclin E1 was stronger than the effect of each miRNA alone; The synergistic actions of miR-497 and miR-34a partly correlated with cyclin E1 levels; These results indicate cyclin E1 is downregulated by both miR-497 and miR-34a which synergistically retard the growth of human lung cancer cells;miR 497 suppresses proliferation of human cervical carcinoma HeLa cells by targeting cyclin E1; Furthermore the target effect of miR-497 on the CCNE1 was identified by dual-luciferase reporter assay system qRT-PCR and Western blotting; Over-expressed miR-497 in HeLa cells could suppress cell proliferation by targeting CCNE1
68 hsa-let-7b-3p CCNE2 -1.22 0 2.02 0 mirMAP -0.27 0.00021 NA
69 hsa-miR-126-3p CCNE2 -0.65 0 2.02 0 miRNAWalker2 validate -0.39 5.0E-5 NA
70 hsa-miR-26a-5p CCNE2 -0.96 0 2.02 0 miRNAWalker2 validate; miRTarBase; miRNATAP -0.49 0 24116110; 21901171 The loss of miR 26a mediated post transcriptional regulation of cyclin E2 in pancreatic cancer cell proliferation and decreased patient survival; The in vitro and in vivo assays showed that overexpression of miR-26a resulted in cell cycle arrest inhibited cell proliferation and decreased tumor growth which was associated with cyclin E2 downregulation;We also show that enforced expression of miR-26a in AML cells is able to inhibit cell cycle progression by downregulating cyclin E2 expression
71 hsa-miR-26b-5p CCNE2 -1.11 0 2.02 0 miRNATAP -0.58 0 NA
72 hsa-miR-30a-5p CCNE2 -0.63 0.00011 2.02 0 miRNATAP -0.36 0 NA
73 hsa-let-7e-5p CCNG1 0.04 0.81107 -0.05 0.64033 miRNAWalker2 validate -0.2 0 NA
74 hsa-miR-132-3p CCNG1 0.32 0.00272 -0.05 0.64033 MirTarget -0.19 1.0E-5 NA
75 hsa-miR-142-3p CCNG1 -1.42 0 -0.05 0.64033 miRanda -0.12 0 NA
76 hsa-miR-142-5p CCNG1 -1.45 0 -0.05 0.64033 mirMAP -0.12 0 NA
77 hsa-miR-181a-5p CCNG1 0.25 0.05519 -0.05 0.64033 miRNAWalker2 validate -0.22 0 NA
78 hsa-miR-21-5p CCNG1 1.51 0 -0.05 0.64033 miRNAWalker2 validate -0.13 0.00024 NA
79 hsa-miR-212-3p CCNG1 -0.29 0.10039 -0.05 0.64033 MirTarget -0.13 0 NA
80 hsa-miR-23a-3p CCNG1 -0.18 0.13598 -0.05 0.64033 MirTarget; miRNATAP -0.32 0 NA
81 hsa-miR-24-3p CCNG1 -0.26 0.0069 -0.05 0.64033 miRNAWalker2 validate -0.34 0 NA
82 hsa-miR-27a-3p CCNG1 -0.37 0.00876 -0.05 0.64033 MirTarget; miRNATAP -0.28 0 NA
83 hsa-miR-339-5p CCNG1 0.28 0.03557 -0.05 0.64033 miRanda -0.18 0 NA
84 hsa-miR-590-5p CCNG1 -0.1 0.31003 -0.05 0.64033 miRanda -0.18 0.00014 NA
85 hsa-miR-101-3p CCNG2 -1.48 0 0.2 0.09986 miRNATAP -0.15 0.00064 NA
86 hsa-miR-139-5p CCNG2 -2.11 0 0.2 0.09986 miRanda -0.12 4.0E-5 NA
87 hsa-miR-192-3p CCNG2 -0.64 0.00027 0.2 0.09986 MirTarget -0.17 0 NA
88 hsa-miR-365a-3p CCNG2 0.16 0.15325 0.2 0.09986 MirTarget -0.2 8.0E-5 NA
89 hsa-miR-374b-5p CCNG2 -0.31 0.00301 0.2 0.09986 mirMAP -0.16 0.00526 NA
90 hsa-miR-590-5p CCNG2 -0.1 0.31003 0.2 0.09986 mirMAP -0.17 0.00377 NA
91 hsa-miR-362-3p CD82 0.81 0 -1.1 0 miRanda -0.15 0.00572 25652145 Anti miR 362 3p Inhibits Migration and Invasion of Human Gastric Cancer Cells by Its Target CD82; Next we analyzed the level of miR-362-3p expression and CD82 in different differentiated GC cells compared with a normal gastric mucosa cell by RT-PCR and Western blot; Dual-luciferase reporter assay and Western blot confirmed a direct interaction between miR-362-3p and CD82 3'UTR; After miR-362-3p and CD82 were silenced in GC cells we compared the transfected GC cells migration and invasion capacity by transwell assay; Western blot was used to detect the impact of CD82 and miR-362-3p on epithelial-to-mesenchymal transition markers in treated GC cells; Level of miR-362-3p expression was much higher in GC cells than in normal gastric mucosa cell and miR-362-3p expression negatively correlated with CD82 mRNA expression in these cell lines; Furthermore miR-362-3p expression induced corrected GC cell metastasis capacity by suppression of CD82 expression; This study illuminated that downregulation of miR-362-3p along with the upregulation of CD82 in GC cells resulted in the inhibition of GC migration and invasion; Thus our results suggested that miR-362-3p or CD82 can be exploited as a new potential target for control of GC in the future
92 hsa-miR-122-5p CDK4 -1.24 0 0.67 0 miRNAWalker2 validate -0.12 0 NA
93 hsa-miR-145-5p CDK4 -1.48 0 0.67 0 miRNAWalker2 validate; miRTarBase -0.15 0 21092188 Furthermore we found that CDK4 was regulated by miR-145 in cell cycle control
94 hsa-miR-193b-3p CDK4 -0.17 0.27202 0.67 0 miRNAWalker2 validate -0.15 0 NA
95 hsa-miR-195-5p CDK4 -1.86 0 0.67 0 miRNAWalker2 validate; miRTarBase -0.18 0 NA
96 hsa-let-7a-3p CDK6 -0.57 0 -0.31 0.22057 miRNATAP -0.34 0.00261 NA
97 hsa-let-7b-5p CDK6 -0.96 0 -0.31 0.22057 miRNAWalker2 validate; miRTarBase -0.22 0.00756 NA
98 hsa-miR-106a-5p CDK6 -0.46 0.00972 -0.31 0.22057 mirMAP -0.28 4.0E-5 NA
99 hsa-miR-106b-5p CDK6 0.65 0 -0.31 0.22057 mirMAP -0.39 0.00029 NA
100 hsa-miR-141-3p CDK6 -0.35 0.257 -0.31 0.22057 TargetScan; miRNATAP -0.14 0.00031 NA
101 hsa-miR-148b-3p CDK6 0.27 0.00185 -0.31 0.22057 mirMAP -0.76 0 NA
102 hsa-miR-16-5p CDK6 -0.4 0.0001 -0.31 0.22057 miRNAWalker2 validate; miRTarBase -0.5 3.0E-5 NA
103 hsa-miR-17-5p CDK6 0.7 2.0E-5 -0.31 0.22057 TargetScan; mirMAP -0.33 0 NA
104 hsa-miR-182-5p CDK6 1.97 0 -0.31 0.22057 mirMAP -0.11 0.00279 NA
105 hsa-miR-195-5p CDK6 -1.86 0 -0.31 0.22057 miRNAWalker2 validate; miRTarBase -0.26 2.0E-5 23333942 Expression of cyclin-dependent kinase 6 and vascular endothelial growth factor was down-regulated by exogenous miR-195 and miR-378 respectively
106 hsa-miR-200c-3p CDK6 -0.1 0.71696 -0.31 0.22057 mirMAP -0.12 0.00446 NA
107 hsa-miR-20a-5p CDK6 0.85 0 -0.31 0.22057 mirMAP -0.34 0 NA
108 hsa-miR-20b-5p CDK6 0.46 0.02859 -0.31 0.22057 mirMAP -0.21 0.0003 26166554 The transfection of miR-20b into EJ cells induced G1 phase cell cycle arrest via the decreased expression of cyclin D1 CDK2 and CDK6 without affecting another G1 phase cell cycle regulator cyclin E
109 hsa-miR-217 CDK6 1.06 0.0401 -0.31 0.22057 mirMAP -0.18 0 NA
110 hsa-miR-224-3p CDK6 1.41 0 -0.31 0.22057 mirMAP -0.14 0.00324 NA
111 hsa-miR-26a-5p CDK6 -0.96 0 -0.31 0.22057 miRNAWalker2 validate; miRTarBase; miRNATAP -0.45 0.00013 26314438 Maxvision immunohistochemistry technique was used to detect the expression level of CDK6 and miR-26a in tissue of 20 ENKTCL cases 10 cases of proliferative lymphadenitis and 10 samples of normal lymph node respectively; The possible role of miR-26a and its target gene CDK6 in genesis and development of ENKTCL were analyzed according to the clinical features of ENKTCL patients; Correlation analysis showed that there was significant negative correlation between miR-26a expression and CDK6 expression r = -0.54 P = 0.04
112 hsa-miR-338-3p CDK6 0.54 0.00461 -0.31 0.22057 mirMAP -0.19 0.00245 NA
113 hsa-miR-340-5p CDK6 -0 0.9685 -0.31 0.22057 mirMAP -0.59 0 NA
114 hsa-miR-425-5p CDK6 0.59 2.0E-5 -0.31 0.22057 mirMAP -0.37 2.0E-5 NA
115 hsa-miR-452-5p CDK6 1.92 0 -0.31 0.22057 mirMAP -0.15 0.00162 NA
116 hsa-miR-497-5p CDK6 -1.41 0 -0.31 0.22057 miRNATAP -0.34 0 NA
117 hsa-miR-502-3p CDK6 0.66 0 -0.31 0.22057 PITA; miRNATAP -0.49 0 NA
118 hsa-miR-616-5p CDK6 0.15 0.40284 -0.31 0.22057 mirMAP -0.22 0.00134 NA
119 hsa-miR-885-5p CDK6 -0.94 0.00119 -0.31 0.22057 mirMAP -0.31 0 NA
120 hsa-miR-92a-3p CDK6 0.21 0.13429 -0.31 0.22057 miRNATAP -0.48 0 NA
121 hsa-miR-106b-5p CDKN1A 0.65 0 -0.77 6.0E-5 miRNAWalker2 validate; miRTarBase; MirTarget; miRNATAP -0.44 0 NA
122 hsa-miR-146b-5p CDKN1A 0.42 0.04574 -0.77 6.0E-5 miRNAWalker2 validate -0.15 0.00059 27602131 During the search for potential targets of miR-146b in ATC p21 also known as p21Waf1/Cip1 or CDKN1A was noted for its role in cell cycle progression and tumor pathogenesis
123 hsa-miR-17-5p CDKN1A 0.7 2.0E-5 -0.77 6.0E-5 miRNAWalker2 validate; miRTarBase; MirTarget; TargetScan; miRNATAP -0.3 0 26482648; 24989082 The low expressions of miR-17 and miR-92 families can maintain cisplatin resistance through the regulation of CDKN1A and RAD21;According to PicTar and Miranda algorithms which predicted CDKN1A p21 as a putative target of miR-17 a luciferase assay was performed and revealed that miR-17 directly targets the 3'-UTR of p21 mRNA
124 hsa-miR-20a-5p CDKN1A 0.85 0 -0.77 6.0E-5 miRNAWalker2 validate; miRTarBase; MirTarget; miRNATAP -0.28 0 26012475 Using the poorly tumorigenic and TGF-β-sensitive FET cell line that expresses low miR-20a levels we first confirmed that miR-20a downmodulated CDKN1A expression both at mRNA and protein level through direct binding to its 3'-UTR; Moreover besides modulating CDKN1A miR-20a blocked TGF-β-induced transactivation of its promoter without affecting the post-receptor activation of Smad3/4 effectors directly; Finally miR-20a abrogated the TGF-β-mediated c-Myc repression a direct inhibitor of the CDKN1A promoter activation most likely by reducing the expression of specific MYC-regulating genes from the Smad/E2F-based core repressor complex
125 hsa-miR-423-3p CDKN1A 0.3 0.00067 -0.77 6.0E-5 miRNAWalker2 validate; miRTarBase -0.42 6.0E-5 NA
126 hsa-miR-423-5p CDKN1A 0.7 0 -0.77 6.0E-5 MirTarget -0.37 3.0E-5 NA
127 hsa-miR-503-5p CDKN1A 0.19 0.26842 -0.77 6.0E-5 miRNAWalker2 validate; miRTarBase -0.14 0.00973 NA
128 hsa-miR-93-5p CDKN1A 1.4 0 -0.77 6.0E-5 miRNAWalker2 validate; miRTarBase; MirTarget; miRNATAP -0.45 0 25633810 MicroRNA 93 activates c Met/PI3K/Akt pathway activity in hepatocellular carcinoma by directly inhibiting PTEN and CDKN1A; We confirmed that miR-93 directly bound with the 3' untranslated regions of the tumor-suppressor genes PTEN and CDKN1A respectivelyand inhibited their expression; We concluded that miR-93 stimulated cell proliferation migration and invasion through the oncogenic c-Met/PI3K/Akt pathway and also inhibited apoptosis by directly inhibiting PTEN and CDKN1A expression in human HCC
129 hsa-miR-942-5p CDKN1A 0.35 0.02833 -0.77 6.0E-5 miRNAWalker2 validate -0.26 1.0E-5 NA
130 hsa-let-7g-5p CDKN2A -0.46 2.0E-5 4 0 miRNAWalker2 validate; miRTarBase -0.48 0.002 NA
131 hsa-miR-125a-5p CDKN2A -0.91 0 4 0 miRanda -0.54 0 NA
132 hsa-miR-125b-5p CDKN2A -1.36 0 4 0 miRNAWalker2 validate -0.65 0 23585871 In this study we further extend our studies by showing that miR-125b represses the protein product of the ink4a/ARF locus p14ARF in two prostate cancer cell lines LNCaP wild type-p53 and 22Rv1 both wild type and mutant p53 as well as in the PC-346C prostate cancer xenograft model that lentivirally overexpressed miR-125b; Conversely treatment of prostate cancer cells with an inhibitor of miR-125b anti-miR-125b resulted in increased expression of p14ARF decreased level of Mdm2 and induction of apoptosis; In addition overexpression of miR-125b in p53-deficient PC3 cells induced down-regulation of p14ARF which leads to increased cell proliferation through a p53-independent manner
133 hsa-miR-455-3p CDKN2A -1.4 0 4 0 miRNAWalker2 validate -0.42 1.0E-5 NA
134 hsa-miR-139-5p CHEK1 -2.11 0 1.38 0 miRanda -0.41 0 NA
135 hsa-miR-195-5p CHEK1 -1.86 0 1.38 0 MirTarget; miRNATAP -0.27 0 25840419 MiR 195 suppresses non small cell lung cancer by targeting CHEK1; We discovered that CHEK1 was a direct target of miR-195 which decreased CHEK1 expression in lung cancer cells
136 hsa-miR-326 CHEK1 -1.88 0 1.38 0 miRanda -0.11 0.00505 NA
137 hsa-miR-424-5p CHEK1 -2.63 0 1.38 0 miRNAWalker2 validate; miRTarBase; MirTarget; miRNATAP -0.28 0 22469983 Suppressed miR 424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer; Moreover miR-424 expression levels were inversely correlated with Chk1 and p-Chk1 protein levels in both cervical cancer and normal tissues; Furthermore RNAi-mediated knockdown of Chk1 decreased matrix metalloproteinase 9 expression and phenocopied the tumor suppressive effects of miR-424 in cell models; Taken together our results identify a crucial tumor suppressive role of miR-424 in the progression of cervical cancer at least partly via upreglating the expression of Chk1 and p-Chk1 and suggest that miR-424 might be a candidate of prognostic predictor or an anticancer therapeutic target for cervical cancer patients
138 hsa-miR-497-5p CHEK1 -1.41 0 1.38 0 MirTarget; miRNATAP -0.29 0 24464213 Checkpoint kinase 1 is negatively regulated by miR 497 in hepatocellular carcinoma; In silico analysis showed that CHEK1 was a candidate target of miR-497 which was previously found to be downregulated in HCC by us; To test whether miR-497 could bind to 3'untranslated region 3'UTR of CHEK1 luciferase reporter assay was conducted; The result revealed that miR-497 could bind to the 3'untranslated region 3'UTR of CHEK1 mRNA; Western blot showed that ectopic expression of miR-497 suppressed the CHEK1 expression and inhibition of miR-497 led to significant upregulation of CHEK1; Finally miR-497 expression was measured in the same 30 HCC samples and the correlation between miR-497 and CHEK1 was analyzed; The results indicated that miR-497 was downregulated in HCC and had a significant negative correlation with CHEK1; Taken together these results demonstrated that CHEK1 was negatively regulated by miR-497 and the overexpressed CHEK1 was resulted from the downregulated miR-497 in HCC which provided a potential molecular target for HCC therapy
139 hsa-miR-511-5p CHEK1 -1.75 0 1.38 0 MirTarget -0.26 0 NA
140 hsa-miR-542-3p CHEK2 -1.31 0 0.99 0 miRanda -0.18 0.00279 NA
141 hsa-miR-361-5p CYCS 0.23 0.00962 0.26 0.01519 miRNAWalker2 validate -0.17 0.00331 NA
142 hsa-miR-330-5p DDB2 0.44 0.00533 -0.47 0.00025 miRanda -0.15 0.00021 NA
143 hsa-miR-27a-3p EI24 -0.37 0.00876 -0.75 0 miRNATAP -0.12 0.00041 NA
144 hsa-miR-330-5p EI24 0.44 0.00533 -0.75 0 miRanda -0.13 2.0E-5 NA
145 hsa-miR-106a-5p FAS -0.46 0.00972 -1.02 0 miRNAWalker2 validate; miRTarBase -0.3 0 22431000; 27142596 miR 106a is frequently upregulated in gastric cancer and inhibits the extrinsic apoptotic pathway by targeting FAS; Bioinformatic analysis combining with validation experiments identified FAS as a direct target of miR-106a; Moreover a significant inverse correlation was found between miR-106a and FAS expression not only in gastric cancer cell lines but also in gastric cancer specimens; Taken together these findings suggest that ectopicly overexpressed miR-106a may play an oncogenic role in gastric carcinogenesis and impair extrinsic apoptotic pathway through targeting FAS;Functional experiment ascertained that miR-106a interacted with FAS and mediated caspase3 pathway
146 hsa-miR-21-5p FAS 1.51 0 -1.02 0 miRNAWalker2 validate -0.35 0 24710931 miR 21 targets Fas ligand mediated apoptosis in breast cancer cell line MCF 7
147 hsa-miR-338-3p FAS 0.54 0.00461 -1.02 0 miRanda -0.23 0 NA
148 hsa-miR-361-5p FAS 0.23 0.00962 -1.02 0 miRanda -0.4 0.00016 NA
149 hsa-miR-590-5p FAS -0.1 0.31003 -1.02 0 miRanda -0.56 0 NA
150 hsa-miR-98-5p FAS -0.05 0.71591 -1.02 0 miRNAWalker2 validate -0.18 0.00981 NA
NumGOOverlapSizeP ValueAdj. P Value
1 REGULATION OF CELL CYCLE 33 949 1.344e-29 6.255e-26
2 CELL CYCLE 32 1316 9.932e-24 2.311e-20
3 POSITIVE REGULATION OF CELL DEATH 24 605 3.873e-22 4.506e-19
4 REGULATION OF CELL DEATH 32 1472 3.069e-22 4.506e-19
5 NEGATIVE REGULATION OF CELL CYCLE 21 433 4.594e-21 4.275e-18
6 POSITIVE REGULATION OF PROTEIN METABOLIC PROCESS 31 1492 7.534e-21 5.843e-18
7 CELL DEATH 27 1001 9.994e-21 6.643e-18
8 REGULATION OF CELL CYCLE ARREST 14 108 3.604e-20 2.096e-17
9 CELL CYCLE PROCESS 27 1081 7.273e-20 3.76e-17
10 MITOTIC CELL CYCLE 24 766 9.531e-20 4.435e-17
11 SIGNAL TRANSDUCTION BY P53 CLASS MEDIATOR 14 127 3.848e-19 1.628e-16
12 NEGATIVE REGULATION OF CELL CYCLE G1 S PHASE TRANSITION 13 98 6.537e-19 2.482e-16
13 POSITIVE REGULATION OF CELL CYCLE 18 332 6.934e-19 2.482e-16
14 G1 DNA DAMAGE CHECKPOINT 12 73 1.064e-18 3.536e-16
15 REGULATION OF CELL CYCLE G1 S PHASE TRANSITION 14 147 3.181e-18 9.869e-16
16 CELL CYCLE CHECKPOINT 15 194 4.202e-18 1.222e-15
17 POSITIVE REGULATION OF CELL CYCLE PROCESS 16 247 4.822e-18 1.275e-15
18 RESPONSE TO ABIOTIC STIMULUS 25 1024 4.932e-18 1.275e-15
19 REGULATION OF PROTEIN MODIFICATION PROCESS 30 1710 5.268e-18 1.29e-15
20 POSITIVE REGULATION OF CELL CYCLE ARREST 12 85 7.429e-18 1.728e-15
21 CELLULAR RESPONSE TO DNA DAMAGE STIMULUS 22 720 8.553e-18 1.895e-15
22 REGULATION OF CELL CYCLE PHASE TRANSITION 17 321 1.135e-17 2.4e-15
23 REGULATION OF TRANSFERASE ACTIVITY 24 946 1.214e-17 2.457e-15
24 REGULATION OF MITOTIC CELL CYCLE 19 468 1.378e-17 2.672e-15
25 NEGATIVE REGULATION OF CELL CYCLE PROCESS 15 214 1.857e-17 3.457e-15
26 SIGNAL TRANSDUCTION IN RESPONSE TO DNA DAMAGE 12 96 3.449e-17 6.172e-15
27 APOPTOTIC SIGNALING PATHWAY 16 289 5.911e-17 9.822e-15
28 MITOTIC DNA INTEGRITY CHECKPOINT 12 100 5.752e-17 9.822e-15
29 CELLULAR RESPONSE TO STRESS 28 1565 7.339e-17 1.178e-14
30 NEGATIVE REGULATION OF CELL CYCLE PHASE TRANSITION 13 146 1.402e-16 2.104e-14
31 DNA INTEGRITY CHECKPOINT 13 146 1.402e-16 2.104e-14
32 REGULATION OF PHOSPHORUS METABOLIC PROCESS 28 1618 1.74e-16 2.53e-14
33 NEGATIVE REGULATION OF MITOTIC CELL CYCLE 14 199 2.365e-16 3.334e-14
34 REGULATION OF CELL CYCLE PROCESS 19 558 3.521e-16 4.818e-14
35 REGULATION OF KINASE ACTIVITY 21 776 6.647e-16 8.837e-14
36 ACTIVATION OF CYSTEINE TYPE ENDOPEPTIDASE ACTIVITY 11 95 1.91e-15 2.469e-13
37 POSITIVE REGULATION OF PROTEOLYSIS 16 363 2.15e-15 2.704e-13
38 REGULATION OF CYCLIN DEPENDENT PROTEIN KINASE ACTIVITY 11 97 2.423e-15 2.967e-13
39 MITOTIC CELL CYCLE CHECKPOINT 12 139 3.37e-15 4.02e-13
40 REGULATION OF PROTEIN SERINE THREONINE KINASE ACTIVITY 17 470 6.438e-15 7.489e-13
41 CELL CYCLE PHASE TRANSITION 14 255 7.563e-15 8.583e-13
42 INTRINSIC APOPTOTIC SIGNALING PATHWAY 12 152 1.001e-14 1.109e-12
43 ZYMOGEN ACTIVATION 11 112 1.239e-14 1.341e-12
44 REGULATION OF CYSTEINE TYPE ENDOPEPTIDASE ACTIVITY 13 213 1.982e-14 2.096e-12
45 REGULATION OF PROTEOLYSIS 19 711 2.852e-14 2.949e-12
46 REGULATION OF CELL PROLIFERATION 25 1496 3.35e-14 3.388e-12
47 POSITIVE REGULATION OF APOPTOTIC SIGNALING PATHWAY 12 171 4.165e-14 4.123e-12
48 REGULATION OF APOPTOTIC SIGNALING PATHWAY 15 363 4.743e-14 4.598e-12
49 INTRACELLULAR SIGNAL TRANSDUCTION 25 1572 1.034e-13 9.815e-12
50 RESPONSE TO OXYGEN LEVELS 14 311 1.165e-13 1.084e-11
51 RESPONSE TO IONIZING RADIATION 11 145 2.231e-13 2.035e-11
52 CELLULAR RESPONSE TO ABIOTIC STIMULUS 13 263 2.987e-13 2.672e-11
53 RESPONSE TO RADIATION 15 413 3.09e-13 2.712e-11
54 REGULATION OF INTRACELLULAR SIGNAL TRANSDUCTION 25 1656 3.35e-13 2.834e-11
55 REPLICATIVE SENESCENCE 6 12 3.334e-13 2.834e-11
56 POSITIVE REGULATION OF PEPTIDASE ACTIVITY 11 154 4.347e-13 3.612e-11
57 POSITIVE REGULATION OF CATALYTIC ACTIVITY 24 1518 4.543e-13 3.709e-11
58 POSITIVE REGULATION OF PROTEIN MODIFICATION PROCESS 21 1135 1.138e-12 9.127e-11
59 POSITIVE REGULATION OF INTRACELLULAR SIGNAL TRANSDUCTION 19 876 1.166e-12 9.196e-11
60 POSITIVE REGULATION OF MOLECULAR FUNCTION 25 1791 1.937e-12 1.477e-10
61 RESPONSE TO UV 10 126 1.91e-12 1.477e-10
62 REGULATION OF PEPTIDASE ACTIVITY 14 392 2.696e-12 2.023e-10
63 AGING 12 264 7.269e-12 5.285e-10
64 POSITIVE REGULATION OF MITOCHONDRIAL OUTER MEMBRANE PERMEABILIZATION INVOLVED IN APOPTOTIC SIGNALING PATHWAY 7 36 7.17e-12 5.285e-10
65 RESPONSE TO DRUG 14 431 9.616e-12 6.883e-10
66 REGULATION OF EXTRINSIC APOPTOTIC SIGNALING PATHWAY 10 153 1.344e-11 9.474e-10
67 NEGATIVE REGULATION OF CELL PROLIFERATION 16 643 1.366e-11 9.484e-10
68 CELL CYCLE ARREST 10 154 1.434e-11 9.813e-10
69 POSITIVE REGULATION OF PHOSPHATE METABOLIC PROCESS 19 1036 2.172e-11 1.444e-09
70 POSITIVE REGULATION OF PHOSPHORUS METABOLIC PROCESS 19 1036 2.172e-11 1.444e-09
71 CELL DIVISION 14 460 2.289e-11 1.5e-09
72 REGULATION OF SIGNAL TRANSDUCTION BY P53 CLASS MEDIATOR 10 162 2.376e-11 1.535e-09
73 POSITIVE REGULATION OF PROTEIN OLIGOMERIZATION 6 22 2.635e-11 1.68e-09
74 REGULATION OF MITOCHONDRIAL OUTER MEMBRANE PERMEABILIZATION INVOLVED IN APOPTOTIC SIGNALING PATHWAY 7 43 2.727e-11 1.714e-09
75 REGULATION OF FIBROBLAST PROLIFERATION 8 81 6.165e-11 3.825e-09
76 INTRINSIC APOPTOTIC SIGNALING PATHWAY BY P53 CLASS MEDIATOR 7 53 1.277e-10 7.815e-09
77 REGULATION OF RESPONSE TO STRESS 21 1468 1.46e-10 8.762e-09
78 CELLULAR RESPONSE TO RADIATION 9 137 1.469e-10 8.762e-09
79 CELLULAR RESPONSE TO EXTERNAL STIMULUS 11 264 1.516e-10 8.932e-09
80 PROTEIN MATURATION 11 265 1.579e-10 9.183e-09
81 REGULATION OF PROTEIN INSERTION INTO MITOCHONDRIAL MEMBRANE INVOLVED IN APOPTOTIC SIGNALING PATHWAY 6 29 1.653e-10 9.379e-09
82 POSITIVE REGULATION OF PROTEIN INSERTION INTO MITOCHONDRIAL MEMBRANE INVOLVED IN APOPTOTIC SIGNALING PATHWAY 6 29 1.653e-10 9.379e-09
83 REGULATION OF EXTRINSIC APOPTOTIC SIGNALING PATHWAY VIA DEATH DOMAIN RECEPTORS 7 55 1.673e-10 9.381e-09
84 RESPONSE TO X RAY 6 30 2.062e-10 1.142e-08
85 REGULATION OF CELL CYCLE G2 M PHASE TRANSITION 7 59 2.789e-10 1.527e-08
86 REGULATION OF CELLULAR RESPONSE TO STRESS 15 691 4.474e-10 2.421e-08
87 REGULATION OF PROTEIN OLIGOMERIZATION 6 35 5.575e-10 2.948e-08
88 NEURON APOPTOTIC PROCESS 6 35 5.575e-10 2.948e-08
89 CELLULAR RESPONSE TO UV 7 66 6.272e-10 3.279e-08
90 CELL AGING 7 67 6.989e-10 3.613e-08
91 CELL CYCLE G1 S PHASE TRANSITION 8 111 7.937e-10 4.014e-08
92 G1 S TRANSITION OF MITOTIC CELL CYCLE 8 111 7.937e-10 4.014e-08
93 RESPONSE TO STEROID HORMONE 13 497 8.407e-10 4.206e-08
94 REGULATION OF MEMBRANE PERMEABILITY 7 70 9.572e-10 4.738e-08
95 INTRINSIC APOPTOTIC SIGNALING PATHWAY IN RESPONSE TO DNA DAMAGE 7 71 1.06e-09 5.19e-08
96 RESPONSE TO LIPID 16 888 1.565e-09 7.584e-08
97 DNA METABOLIC PROCESS 15 758 1.592e-09 7.636e-08
98 NEGATIVE REGULATION OF CELL CYCLE ARREST 5 20 2.152e-09 1.022e-07
99 REGULATION OF RELEASE OF CYTOCHROME C FROM MITOCHONDRIA 6 44 2.378e-09 1.118e-07
100 RESPONSE TO ORGANIC CYCLIC COMPOUND 16 917 2.483e-09 1.155e-07
101 RESPONSE TO OXYGEN CONTAINING COMPOUND 19 1381 2.811e-09 1.295e-07
102 NEURON DEATH 6 47 3.595e-09 1.624e-07
103 POSITIVE REGULATION OF NEURON APOPTOTIC PROCESS 6 47 3.595e-09 1.624e-07
104 NEGATIVE REGULATION OF PROTEIN METABOLIC PROCESS 17 1087 3.641e-09 1.629e-07
105 POSITIVE REGULATION OF CELLULAR PROTEIN LOCALIZATION 11 360 3.984e-09 1.765e-07
106 RESPONSE TO ALCOHOL 11 362 4.22e-09 1.852e-07
107 RESPONSE TO LIGHT STIMULUS 10 280 4.974e-09 2.163e-07
108 CELLULAR RESPONSE TO OXYGEN LEVELS 8 143 5.964e-09 2.569e-07
109 CELLULAR RESPONSE TO LIGHT STIMULUS 7 91 6.178e-09 2.637e-07
110 MITOCHONDRIAL MEMBRANE ORGANIZATION 7 92 6.672e-09 2.822e-07
111 POSITIVE REGULATION OF INTRINSIC APOPTOTIC SIGNALING PATHWAY 6 52 6.742e-09 2.826e-07
112 POSITIVE REGULATION OF EXTRINSIC APOPTOTIC SIGNALING PATHWAY 6 53 7.587e-09 3.152e-07
113 REGULATION OF MITOCHONDRION ORGANIZATION 9 218 8.947e-09 3.652e-07
114 RESPONSE TO ESTROGEN 9 218 8.947e-09 3.652e-07
115 REGULATION OF PROTEIN STABILITY 9 221 1.008e-08 4.077e-07
116 NEGATIVE REGULATION OF CELL DEATH 15 872 1.057e-08 4.241e-07
117 POSITIVE REGULATION OF TRANSFERASE ACTIVITY 13 616 1.108e-08 4.406e-07
118 POSITIVE REGULATION OF LEUKOCYTE APOPTOTIC PROCESS 5 28 1.341e-08 5.244e-07
119 POSITIVE REGULATION OF RELEASE OF CYTOCHROME C FROM MITOCHONDRIA 5 28 1.341e-08 5.244e-07
120 POSITIVE REGULATION OF CELL COMMUNICATION 19 1532 1.54e-08 5.971e-07
121 PROTEOLYSIS 17 1208 1.755e-08 6.749e-07
122 NEGATIVE REGULATION OF PHOSPHORYLATION 11 422 2.056e-08 7.842e-07
123 RESPONSE TO TOXIC SUBSTANCE 9 241 2.135e-08 8.078e-07
124 NEGATIVE REGULATION OF MOLECULAR FUNCTION 16 1079 2.489e-08 9.339e-07
125 RESPONSE TO METAL ION 10 333 2.584e-08 9.619e-07
126 POSITIVE REGULATION OF NEURON DEATH 6 67 3.2e-08 1.174e-06
127 REGULATION OF CELLULAR PROTEIN LOCALIZATION 12 552 3.203e-08 1.174e-06
128 T CELL HOMEOSTASIS 5 34 3.749e-08 1.363e-06
129 ACTIVATION OF CYSTEINE TYPE ENDOPEPTIDASE ACTIVITY INVOLVED IN APOPTOTIC SIGNALING PATHWAY 4 13 3.867e-08 1.395e-06
130 RESPONSE TO KETONE 8 182 3.944e-08 1.412e-06
131 NEGATIVE REGULATION OF TRANSFERASE ACTIVITY 10 351 4.241e-08 1.506e-06
132 RESPONSE TO EXTERNAL STIMULUS 20 1821 4.375e-08 1.542e-06
133 NEGATIVE REGULATION OF CATALYTIC ACTIVITY 14 829 4.544e-08 1.59e-06
134 REGULATION OF ESTABLISHMENT OF PROTEIN LOCALIZATION TO MITOCHONDRION 7 128 6.663e-08 2.314e-06
135 POSITIVE REGULATION OF INTRACELLULAR TRANSPORT 10 370 6.949e-08 2.395e-06
136 EXTRINSIC APOPTOTIC SIGNALING PATHWAY VIA DEATH DOMAIN RECEPTORS 5 39 7.676e-08 2.626e-06
137 PROTEIN STABILIZATION 7 131 7.816e-08 2.655e-06
138 POSITIVE REGULATION OF KINASE ACTIVITY 11 482 7.956e-08 2.683e-06
139 NEGATIVE REGULATION OF APOPTOTIC SIGNALING PATHWAY 8 200 8.185e-08 2.74e-06
140 REGULATION OF LEUKOCYTE APOPTOTIC PROCESS 6 79 8.688e-08 2.887e-06
141 NEGATIVE REGULATION OF RESPONSE TO STIMULUS 17 1360 9.919e-08 3.273e-06
142 POSITIVE REGULATION OF PROTEIN SERINE THREONINE KINASE ACTIVITY 9 289 1.014e-07 3.322e-06
143 CELL CYCLE G2 M PHASE TRANSITION 7 138 1.118e-07 3.637e-06
144 POSITIVE REGULATION OF RESPONSE TO STIMULUS 20 1929 1.139e-07 3.657e-06
145 RESPONSE TO HORMONE 14 893 1.14e-07 3.657e-06
146 REGULATION OF INTRACELLULAR TRANSPORT 12 621 1.156e-07 3.686e-06
147 POSITIVE REGULATION OF CYSTEINE TYPE ENDOPEPTIDASE ACTIVITY INVOLVED IN APOPTOTIC SIGNALING PATHWAY 4 17 1.277e-07 4.041e-06
148 REGULATION OF INTRINSIC APOPTOTIC SIGNALING PATHWAY 7 145 1.569e-07 4.932e-06
149 RESPONSE TO ESTRADIOL 7 146 1.644e-07 5.1e-06
150 POSITIVE REGULATION OF MITOCHONDRIAL MEMBRANE PERMEABILITY 4 18 1.638e-07 5.1e-06
151 NEGATIVE REGULATION OF PHOSPHORUS METABOLIC PROCESS 11 541 2.536e-07 7.762e-06
152 NEGATIVE REGULATION OF PHOSPHATE METABOLIC PROCESS 11 541 2.536e-07 7.762e-06
153 POSITIVE REGULATION OF LYMPHOCYTE APOPTOTIC PROCESS 4 20 2.583e-07 7.854e-06
154 LYMPHOCYTE HOMEOSTASIS 5 50 2.759e-07 8.283e-06
155 RESPONSE TO GAMMA RADIATION 5 50 2.759e-07 8.283e-06
156 NEGATIVE REGULATION OF EXTRINSIC APOPTOTIC SIGNALING PATHWAY 6 98 3.159e-07 9.421e-06
157 REGENERATION 7 161 3.201e-07 9.486e-06
158 EXTRINSIC APOPTOTIC SIGNALING PATHWAY 6 99 3.355e-07 9.88e-06
159 POSITIVE REGULATION OF FIBROBLAST PROLIFERATION 5 53 3.714e-07 1.087e-05
160 REGULATION OF MITOCHONDRIAL MEMBRANE PERMEABILITY INVOLVED IN APOPTOTIC PROCESS 4 22 3.883e-07 1.115e-05
161 RELEASE OF CYTOCHROME C FROM MITOCHONDRIA 4 22 3.883e-07 1.115e-05
162 REGULATION OF CYSTEINE TYPE ENDOPEPTIDASE ACTIVITY INVOLVED IN APOPTOTIC SIGNALING PATHWAY 4 22 3.883e-07 1.115e-05
163 REGULATION OF LYMPHOCYTE APOPTOTIC PROCESS 5 54 4.084e-07 1.164e-05
164 POSITIVE REGULATION OF MITOCHONDRION ORGANIZATION 7 167 4.102e-07 1.164e-05
165 REGULATION OF HYDROLASE ACTIVITY 16 1327 4.262e-07 1.202e-05
166 NEGATIVE REGULATION OF KINASE ACTIVITY 8 250 4.51e-07 1.257e-05
167 POSITIVE REGULATION OF ORGANELLE ORGANIZATION 11 573 4.487e-07 1.257e-05
168 REGULATION OF NEURON DEATH 8 252 4.791e-07 1.327e-05
169 RESPONSE TO NITROGEN COMPOUND 13 859 5.261e-07 1.449e-05
170 APOPTOTIC MITOCHONDRIAL CHANGES 5 57 5.372e-07 1.47e-05
171 RESPONSE TO CORTICOSTEROID 7 176 5.848e-07 1.591e-05
172 MITOCHONDRIAL TRANSPORT 7 177 6.076e-07 1.644e-05
173 NEGATIVE REGULATION OF CELL COMMUNICATION 15 1192 6.258e-07 1.683e-05
174 MITOCHONDRION ORGANIZATION 11 594 6.4e-07 1.712e-05
175 REGULATION OF CATABOLIC PROCESS 12 731 6.618e-07 1.76e-05
176 LEUKOCYTE HOMEOSTASIS 5 60 6.963e-07 1.841e-05
177 RESPONSE TO INORGANIC SUBSTANCE 10 479 7.503e-07 1.972e-05
178 RESPONSE TO CORTICOSTERONE 4 26 7.87e-07 2.057e-05
179 NEGATIVE REGULATION OF PROTEIN MODIFICATION PROCESS 11 616 9.148e-07 2.378e-05
180 REGULATION OF NEURON APOPTOTIC PROCESS 7 192 1.05e-06 2.713e-05
181 REGULATION OF DNA DAMAGE RESPONSE SIGNAL TRANSDUCTION BY P53 CLASS MEDIATOR 4 28 1.073e-06 2.759e-05
182 REGULATION OF GROWTH 11 633 1.194e-06 3.052e-05
183 POSITIVE REGULATION OF MITOTIC CELL CYCLE 6 123 1.208e-06 3.073e-05
184 POSITIVE REGULATION OF PROTEIN COMPLEX ASSEMBLY 7 197 1.247e-06 3.152e-05
185 REGULATION OF PROTEIN CATABOLIC PROCESS 9 393 1.335e-06 3.359e-05
186 RESPONSE TO ENDOGENOUS STIMULUS 16 1450 1.388e-06 3.473e-05
187 INTRINSIC APOPTOTIC SIGNALING PATHWAY IN RESPONSE TO DNA DAMAGE BY P53 CLASS MEDIATOR 4 30 1.431e-06 3.522e-05
188 NEGATIVE REGULATION OF B CELL ACTIVATION 4 30 1.431e-06 3.522e-05
189 NEGATIVE REGULATION OF CELL MATRIX ADHESION 4 30 1.431e-06 3.522e-05
190 DNA REPLICATION 7 208 1.791e-06 4.386e-05
191 NEGATIVE REGULATION OF CYCLIN DEPENDENT PROTEIN KINASE ACTIVITY 4 32 1.87e-06 4.531e-05
192 INTRINSIC APOPTOTIC SIGNALING PATHWAY IN RESPONSE TO ENDOPLASMIC RETICULUM STRESS 4 32 1.87e-06 4.531e-05
193 RESPONSE TO MECHANICAL STIMULUS 7 210 1.909e-06 4.602e-05
194 REGULATION OF PROTEIN EXPORT FROM NUCLEUS 4 33 2.123e-06 5.092e-05
195 PROTEIN KINASE B SIGNALING 4 34 2.401e-06 5.7e-05
196 NEGATIVE REGULATION OF EXTRINSIC APOPTOTIC SIGNALING PATHWAY VIA DEATH DOMAIN RECEPTORS 4 34 2.401e-06 5.7e-05
197 POSITIVE REGULATION OF CELLULAR COMPONENT ORGANIZATION 14 1152 2.432e-06 5.744e-05
198 RESPONSE TO MINERALOCORTICOID 4 35 2.705e-06 6.357e-05
199 CELLULAR RESPONSE TO MECHANICAL STIMULUS 5 80 2.937e-06 6.868e-05
200 POSITIVE REGULATION OF CYCLIN DEPENDENT PROTEIN KINASE ACTIVITY 4 36 3.037e-06 7.066e-05
201 REGULATION OF ORGANELLE ORGANIZATION 14 1178 3.157e-06 7.272e-05
202 REGULATION OF RESPONSE TO DNA DAMAGE STIMULUS 6 145 3.154e-06 7.272e-05
203 ACTIVATION OF MAPKKK ACTIVITY 3 11 3.377e-06 7.74e-05
204 RESPONSE TO EXTRACELLULAR STIMULUS 9 441 3.434e-06 7.834e-05
205 REGULATION OF PROTEASOMAL UBIQUITIN DEPENDENT PROTEIN CATABOLIC PROCESS 6 148 3.551e-06 7.981e-05
206 ORGAN REGENERATION 5 83 3.525e-06 7.981e-05
207 RESPONSE TO TRANSITION METAL NANOPARTICLE 6 148 3.551e-06 7.981e-05
208 RESPONSE TO ENDOPLASMIC RETICULUM STRESS 7 233 3.799e-06 8.498e-05
209 PROTEIN CATABOLIC PROCESS 10 579 4.107e-06 9.144e-05
210 NEGATIVE REGULATION OF GROWTH 7 236 4.133e-06 9.157e-05
211 REGULATION OF DNA METABOLIC PROCESS 8 340 4.484e-06 9.889e-05
212 REGULATION OF CELL MATRIX ADHESION 5 90 5.257e-06 0.0001154
213 POSITIVE REGULATION OF MAPK CASCADE 9 470 5.755e-06 0.0001257
214 POSITIVE REGULATION OF DNA DAMAGE RESPONSE SIGNAL TRANSDUCTION BY P53 CLASS MEDIATOR 3 13 5.83e-06 0.0001262
215 RESPONSE TO COBALT ION 3 13 5.83e-06 0.0001262
216 POSITIVE REGULATION OF HYDROLASE ACTIVITY 12 905 6.071e-06 0.0001308
217 DNA REPAIR 9 480 6.82e-06 0.0001462
218 POSITIVE REGULATION OF P38MAPK CASCADE 3 14 7.405e-06 0.0001566
219 RESPONSE TO CARBOHYDRATE 6 168 7.367e-06 0.0001566
220 DETERMINATION OF ADULT LIFESPAN 3 14 7.405e-06 0.0001566
221 REGULATION OF CELLULAR LOCALIZATION 14 1277 8.021e-06 0.0001689
222 RESPONSE TO ANTIBIOTIC 4 47 8.988e-06 0.0001884
223 NEGATIVE REGULATION OF B CELL PROLIFERATION 3 15 9.238e-06 0.0001928
224 REGULATION OF PROTEIN LOCALIZATION 12 950 9.925e-06 0.0002062
225 REGULATION OF CELLULAR PROTEIN CATABOLIC PROCESS 7 274 1.097e-05 0.0002268
226 REGULATION OF PROTEASOMAL PROTEIN CATABOLIC PROCESS 6 181 1.128e-05 0.0002322
227 REGULATION OF PROTEIN HOMOOLIGOMERIZATION 3 16 1.135e-05 0.0002326
228 POSITIVE REGULATION OF ESTABLISHMENT OF PROTEIN LOCALIZATION 9 514 1.18e-05 0.0002408
229 CELLULAR RESPONSE TO IONIZING RADIATION 4 52 1.35e-05 0.0002743
230 POSITIVE REGULATION OF SIGNAL TRANSDUCTION BY P53 CLASS MEDIATOR 3 17 1.375e-05 0.000277
231 POSITIVE REGULATION OF EXTRINSIC APOPTOTIC SIGNALING PATHWAY VIA DEATH DOMAIN RECEPTORS 3 17 1.375e-05 0.000277
232 CELLULAR RESPONSE TO EXTRACELLULAR STIMULUS 6 188 1.4e-05 0.0002807
233 NEGATIVE REGULATION OF CELL SUBSTRATE ADHESION 4 53 1.457e-05 0.000291
234 POSITIVE REGULATION OF CELLULAR COMPONENT BIOGENESIS 8 406 1.631e-05 0.0003243
235 REGULATION OF B CELL PROLIFERATION 4 55 1.69e-05 0.0003347
236 RHYTHMIC PROCESS 7 298 1.886e-05 0.0003719
237 POSITIVE REGULATION OF PROTEIN EXPORT FROM NUCLEUS 3 19 1.952e-05 0.0003832
238 REGULATION OF B CELL ACTIVATION 5 121 2.226e-05 0.0004353
239 REGULATION OF TRANSPORT 16 1804 2.281e-05 0.0004442
240 NEGATIVE REGULATION OF PROTEIN SERINE THREONINE KINASE ACTIVITY 5 126 2.706e-05 0.0005247
241 NEGATIVE REGULATION OF INTRACELLULAR SIGNAL TRANSDUCTION 8 437 2.762e-05 0.0005333
242 MEMBRANE ORGANIZATION 11 899 3.311e-05 0.0006367
243 REGULATION OF NUCLEOCYTOPLASMIC TRANSPORT 6 220 3.396e-05 0.0006502
244 RESPONSE TO MAGNESIUM ION 3 23 3.539e-05 0.0006667
245 RESPONSE TO INCREASED OXYGEN LEVELS 3 23 3.539e-05 0.0006667
246 RESPONSE TO HYPEROXIA 3 23 3.539e-05 0.0006667
247 PROTEIN INSERTION INTO MEMBRANE 3 23 3.539e-05 0.0006667
248 POSITIVE REGULATION OF CELL CYCLE PHASE TRANSITION 4 68 3.929e-05 0.0007371
249 CIRCADIAN RHYTHM 5 137 4.044e-05 0.0007527
250 REGULATION OF EXECUTION PHASE OF APOPTOSIS 3 24 4.036e-05 0.0007527
251 CELLULAR RESPONSE TO ORGANIC CYCLIC COMPOUND 8 465 4.291e-05 0.0007954
252 MACROMOLECULE CATABOLIC PROCESS 11 926 4.338e-05 0.000801
253 PROTEIN LOCALIZATION TO MITOCHONDRION 4 70 4.405e-05 0.0008101
254 HISTONE PHOSPHORYLATION 3 25 4.578e-05 0.0008386
255 REGULATION OF CELLULAR COMPONENT BIOGENESIS 10 767 4.668e-05 0.0008518
256 POSITIVE REGULATION OF TRANSPORT 11 936 4.782e-05 0.0008692
257 REGULATION OF P38MAPK CASCADE 3 26 5.165e-05 0.0009351
258 NEGATIVE REGULATION OF FIBROBLAST PROLIFERATION 3 27 5.799e-05 0.001046
259 PHOSPHATE CONTAINING COMPOUND METABOLIC PROCESS 16 1977 6.988e-05 0.001255
260 REGULATION OF PROTEIN COMPLEX ASSEMBLY 7 375 8.104e-05 0.00145
261 REGULATION OF MAPK CASCADE 9 660 8.315e-05 0.001482
262 MULTICELLULAR ORGANISM AGING 3 31 8.841e-05 0.00157
263 REGULATION OF NUCLEAR DIVISION 5 163 9.234e-05 0.001634
264 POSITIVE REGULATION OF REACTIVE OXYGEN SPECIES METABOLIC PROCESS 4 86 9.869e-05 0.001739
265 MACROMOLECULAR COMPLEX ASSEMBLY 13 1398 9.987e-05 0.001754
266 CELLULAR SENESCENCE 3 33 0.0001069 0.001849
267 SIGNAL TRANSDUCTION IN ABSENCE OF LIGAND 3 33 0.0001069 0.001849
268 EXTRINSIC APOPTOTIC SIGNALING PATHWAY IN ABSENCE OF LIGAND 3 33 0.0001069 0.001849
269 REGULATION OF CELL AGING 3 33 0.0001069 0.001849
270 POSITIVE REGULATION OF CATABOLIC PROCESS 7 395 0.000112 0.00193
271 PROTEIN DESTABILIZATION 3 34 0.000117 0.002009
272 REGULATION OF CELL SUBSTRATE ADHESION 5 173 0.0001222 0.00209
273 NEGATIVE REGULATION OF PROTEIN PROCESSING 3 35 0.0001277 0.002145
274 ACTIVATION OF PROTEIN KINASE ACTIVITY 6 279 0.0001263 0.002145
275 NEGATIVE REGULATION OF PROTEIN MATURATION 3 35 0.0001277 0.002145
276 RESPONSE TO IRON ION 3 35 0.0001277 0.002145
277 REGULATION OF RESPONSE TO REACTIVE OXYGEN SPECIES 3 35 0.0001277 0.002145
278 HOMEOSTASIS OF NUMBER OF CELLS 5 175 0.000129 0.002158
279 REGULATION OF EPITHELIAL CELL PROLIFERATION 6 285 0.0001418 0.002365
280 RESPONSE TO BIOTIC STIMULUS 10 886 0.0001543 0.002565
281 POSITIVE REGULATION OF PROTEASOMAL PROTEIN CATABOLIC PROCESS 4 98 0.0001637 0.002711
282 LIMBIC SYSTEM DEVELOPMENT 4 100 0.000177 0.002921
283 RESPONSE TO NUTRIENT 5 191 0.000194 0.00319
284 POSITIVE REGULATION OF CELLULAR PROTEIN CATABOLIC PROCESS 5 192 0.0001988 0.003257
285 PROTEIN OLIGOMERIZATION 7 434 2e-04 0.003266
286 CELLULAR RESPONSE TO ESTROGEN STIMULUS 3 41 0.0002055 0.003344
287 REGULATION OF GLUCOSE METABOLIC PROCESS 4 106 0.0002215 0.003591
288 POSITIVE REGULATION OF GENE EXPRESSION 14 1733 0.0002282 0.003687
289 CELLULAR CATABOLIC PROCESS 12 1322 0.0002436 0.003923
290 PROTEIN COMPLEX BIOGENESIS 11 1132 0.0002578 0.004094
291 PROTEIN PHOSPHORYLATION 10 944 0.0002578 0.004094
292 DEVELOPMENTAL PROCESS INVOLVED IN REPRODUCTION 8 602 0.0002556 0.004094
293 PROTEIN COMPLEX ASSEMBLY 11 1132 0.0002578 0.004094
294 RESPONSE TO MOLECULE OF BACTERIAL ORIGIN 6 321 0.0002697 0.004268
295 REGULATION OF LEUKOCYTE PROLIFERATION 5 206 0.0002753 0.004343
296 POSITIVE REGULATION OF DEVELOPMENTAL PROCESS 11 1142 0.0002781 0.004372
297 CATABOLIC PROCESS 14 1773 0.0002892 0.004531
298 NEGATIVE REGULATION OF PROTEOLYSIS 6 329 0.0003076 0.004804
299 CARDIOVASCULAR SYSTEM DEVELOPMENT 9 788 0.0003141 0.004872
300 CIRCULATORY SYSTEM DEVELOPMENT 9 788 0.0003141 0.004872
301 CELLULAR RESPONSE TO STARVATION 4 117 0.0003231 0.004995
302 PROTEIN UBIQUITINATION 8 629 0.0003433 0.005289
303 REGULATION OF SMOOTH MUSCLE CELL MIGRATION 3 49 0.0003497 0.005369
304 POSITIVE REGULATION OF NUCLEOCYTOPLASMIC TRANSPORT 4 121 0.0003672 0.00562
305 REGULATION OF CYTOPLASMIC TRANSPORT 7 481 0.0003731 0.005692
306 LYMPHOCYTE ACTIVATION 6 342 0.0003782 0.005751
307 REGULATION OF CELL ACTIVATION 7 484 0.0003873 0.00587
308 NEGATIVE REGULATION OF CELL ADHESION 5 223 0.0003963 0.005987
309 REGULATION OF IMMUNE SYSTEM PROCESS 12 1403 0.00042 0.006324
310 TELENCEPHALON DEVELOPMENT 5 228 0.0004385 0.006582
311 RESPONSE TO OXIDATIVE STRESS 6 352 0.0004406 0.006592
312 ORGANELLE FISSION 7 496 0.0004485 0.006688
313 REGULATION OF MITOCHONDRIAL MEMBRANE POTENTIAL 3 54 0.0004661 0.006929
314 EXECUTION PHASE OF APOPTOSIS 3 55 0.000492 0.007291
315 REGULATION OF THYMOCYTE APOPTOTIC PROCESS 2 12 0.0004992 0.007304
316 DEOXYRIBONUCLEOTIDE BIOSYNTHETIC PROCESS 2 12 0.0004992 0.007304
317 POSITIVE REGULATION OF EXECUTION PHASE OF APOPTOSIS 2 12 0.0004992 0.007304
318 POSITIVE REGULATION OF INSULIN LIKE GROWTH FACTOR RECEPTOR SIGNALING PATHWAY 2 12 0.0004992 0.007304
319 MITOTIC NUCLEAR DIVISION 6 361 0.0005034 0.007343
320 PHOSPHORYLATION 11 1228 0.0005161 0.007505
321 CELL PROLIFERATION 8 672 0.0005325 0.007719
322 PROTEIN UBIQUITINATION INVOLVED IN UBIQUITIN DEPENDENT PROTEIN CATABOLIC PROCESS 4 134 0.0005403 0.007807
323 RESPONSE TO ETHANOL 4 136 0.0005713 0.008229
324 MITOTIC CELL CYCLE ARREST 2 13 0.0005889 0.008311
325 REGULATION OF IRE1 MEDIATED UNFOLDED PROTEIN RESPONSE 2 13 0.0005889 0.008311
326 RESPONSE TO ALKALOID 4 137 0.0005872 0.008311
327 HEPATOCYTE APOPTOTIC PROCESS 2 13 0.0005889 0.008311
328 POSITIVE REGULATION OF ENDOPLASMIC RETICULUM UNFOLDED PROTEIN RESPONSE 2 13 0.0005889 0.008311
329 REGULATION OF HISTONE PHOSPHORYLATION 2 13 0.0005889 0.008311
330 NEGATIVE REGULATION OF IMMUNE SYSTEM PROCESS 6 372 0.0005894 0.008311
331 REGULATION OF EPITHELIAL CELL APOPTOTIC PROCESS 3 59 0.0006049 0.008503
332 RESPONSE TO BACTERIUM 7 528 0.0006502 0.009112
333 PROTEIN MODIFICATION BY SMALL PROTEIN CONJUGATION OR REMOVAL 9 873 0.0006607 0.009231
334 REGULATION OF INTRACELLULAR PROTEIN TRANSPORT 6 381 0.000668 0.009306
335 MITOCHONDRIAL DNA METABOLIC PROCESS 2 14 0.0006858 0.009413
336 INSULIN LIKE GROWTH FACTOR RECEPTOR SIGNALING PATHWAY 2 14 0.0006858 0.009413
337 REGULATION OF FIBRINOLYSIS 2 14 0.0006858 0.009413
338 POSITIVE REGULATION OF EXTRINSIC APOPTOTIC SIGNALING PATHWAY IN ABSENCE OF LIGAND 2 14 0.0006858 0.009413
339 REGULATION OF SMOOTH MUSCLE CELL APOPTOTIC PROCESS 2 14 0.0006858 0.009413
340 RAS PROTEIN SIGNAL TRANSDUCTION 4 143 0.0006897 0.009439
341 LEUKOCYTE CELL CELL ADHESION 5 255 0.0007282 0.009937
NumGOOverlapSizeP ValueAdj. P Value
1 CYCLIN DEPENDENT PROTEIN SERINE THREONINE KINASE REGULATOR ACTIVITY 7 28 1.035e-12 9.612e-10
2 ENZYME BINDING 23 1737 6.414e-11 2.979e-08
3 KINASE BINDING 14 606 8.507e-10 2.634e-07
4 CYCLIN DEPENDENT PROTEIN KINASE ACTIVITY 5 34 3.749e-08 6.966e-06
5 P53 BINDING 6 67 3.2e-08 6.966e-06
6 KINASE REGULATOR ACTIVITY 7 186 8.483e-07 0.0001313
7 CYCLIN DEPENDENT PROTEIN SERINE THREONINE KINASE INHIBITOR ACTIVITY 3 12 4.493e-06 0.0005963
8 PROTEIN COMPLEX BINDING 12 935 8.452e-06 0.0009815
9 PROTEIN KINASE ACTIVITY 10 640 9.896e-06 0.001021
10 CYCLIN BINDING 3 19 1.952e-05 0.001511
11 KINASE ACTIVITY 11 842 1.81e-05 0.001511
12 DEATH RECEPTOR BINDING 3 18 1.647e-05 0.001511
13 MACROMOLECULAR COMPLEX BINDING 14 1399 2.252e-05 0.001609
14 PROTEIN SERINE THREONINE KINASE ACTIVITY 8 445 3.143e-05 0.002085
15 PROTEIN SERINE THREONINE KINASE INHIBITOR ACTIVITY 3 30 8.001e-05 0.004687
16 TRANSFERASE ACTIVITY TRANSFERRING PHOSPHORUS CONTAINING GROUPS 11 992 8.073e-05 0.004687
17 UBIQUITIN LIKE PROTEIN LIGASE BINDING 6 264 9.334e-05 0.005101
18 IDENTICAL PROTEIN BINDING 12 1209 0.0001054 0.005441
19 UBIQUITIN LIKE PROTEIN TRANSFERASE ACTIVITY 7 420 0.0001636 0.008
20 PROTEASE BINDING 4 104 0.0002059 0.009562
NumGOOverlapSizeP ValueAdj. P Value
1 CYCLIN DEPENDENT PROTEIN KINASE HOLOENZYME COMPLEX 7 31 2.283e-12 1.333e-09
2 PROTEIN KINASE COMPLEX 7 90 5.715e-09 1.669e-06
3 TRANSFERASE COMPLEX TRANSFERRING PHOSPHORUS CONTAINING GROUPS 8 237 3.006e-07 5.852e-05
4 CATALYTIC COMPLEX 14 1038 7.075e-07 0.0001033
5 TRANSFERASE COMPLEX 10 703 2.227e-05 0.002601
6 NUCLEAR BODY 7 349 5.161e-05 0.005024

Over-represented Pathway

NumPathwayPathviewOverlapSizeP ValueAdj. P Value
1 hsa04115_p53_signaling_pathway 56 69 4.119e-153 7.415e-151
2 hsa04110_Cell_cycle 20 128 1.828e-30 1.645e-28
3 hsa04151_PI3K_AKT_signaling_pathway 14 351 6.059e-13 3.635e-11
4 hsa04210_Apoptosis 9 89 2.886e-12 1.299e-10
5 hsa04390_Hippo_signaling_pathway 6 154 4.467e-06 0.0001608
6 hsa04114_Oocyte_meiosis 5 114 1.669e-05 0.0005006
7 hsa04510_Focal_adhesion 6 200 1.987e-05 0.0005109
8 hsa04120_Ubiquitin_mediated_proteolysis 5 139 4.334e-05 0.0009752
9 hsa04310_Wnt_signaling_pathway 5 151 6.43e-05 0.001286
10 hsa04010_MAPK_signaling_pathway 6 268 0.0001014 0.001689
11 hsa04914_Progesterone.mediated_oocyte_maturation 4 87 0.0001032 0.001689
12 hsa04650_Natural_killer_cell_mediated_cytotoxicity 4 136 0.0005713 0.008569
13 hsa04722_Neurotrophin_signaling_pathway 3 127 0.005424 0.0751
14 hsa00480_Glutathione_metabolism 2 50 0.008655 0.1055
15 hsa04150_mTOR_signaling_pathway 2 52 0.009335 0.1055
16 hsa04630_Jak.STAT_signaling_pathway 3 155 0.009374 0.1055
17 hsa00240_Pyrimidine_metabolism 2 99 0.03142 0.3326
18 hsa04530_Tight_junction 2 133 0.05354 0.5354
19 hsa00230_Purine_metabolism 2 162 0.07561 0.7163

lncRNA-mediated sponge

(Download full result)

Num lncRNA miRNAs           miRNAs count     Gene Sponge regulatory network lncRNA log2FC lncRNA pvalue Gene log2FC Gene pvalue lncRNA-gene Pearson correlation
1 MALAT1 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-424-5p 10 MDM4 Sponge network 1.297 0 0.734 0 0.615
2 KB-1572G7.2 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-3607-3p;hsa-miR-374b-5p;hsa-miR-424-5p 10 MDM4 Sponge network 2.124 0 0.734 0 0.611
3 AC159540.1 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-374b-5p;hsa-miR-424-5p 11 MDM4 Sponge network 2.112 0 0.734 0 0.586
4 GUSBP11 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-3607-3p;hsa-miR-374b-5p;hsa-miR-424-5p 10 MDM4 Sponge network 2.066 0 0.734 0 0.583
5 AC005154.6 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-424-5p;hsa-miR-542-3p 11 MDM4 Sponge network 1.75 0 0.734 0 0.509
6 SNHG1 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30a-5p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-3607-3p;hsa-miR-424-5p 10 MDM4 Sponge network 2.013 0 0.734 0 0.493
7

GAS5

hsa-let-7c-5p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30a-5p;hsa-miR-30e-3p;hsa-miR-374a-3p;hsa-miR-374b-5p;hsa-miR-542-3p 10 MDM4 Sponge network 1.966 0 0.734 0 0.46
8

GAS5

hsa-let-7a-2-3p;hsa-let-7g-3p;hsa-miR-101-3p;hsa-miR-125b-5p;hsa-miR-139-5p;hsa-miR-140-5p;hsa-miR-144-3p;hsa-miR-27b-3p;hsa-miR-345-5p;hsa-miR-590-3p 10 BBC3 Sponge network 1.966 0 0.805 0 0.454
9 CTD-2228K2.7 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-374b-5p;hsa-miR-424-5p;hsa-miR-542-3p 11 MDM4 Sponge network 2.28 0 0.734 0 0.452
10 RP11-600F24.7 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-3607-3p;hsa-miR-424-5p;hsa-miR-542-3p 11 MDM4 Sponge network 2.603 0 0.734 0 0.451
11 PSMD5-AS1 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-424-5p;hsa-miR-542-3p 11 MDM4 Sponge network 1.538 0 0.734 0 0.436
12 SNHG12 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-424-5p;hsa-miR-542-3p 10 MDM4 Sponge network 1.791 0 0.734 0 0.419
13 HCG18 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-424-5p 10 MDM4 Sponge network 1.42 0 0.734 0 0.405
14

RP11-12A2.3

hsa-miR-106b-5p;hsa-miR-17-5p;hsa-miR-181a-5p;hsa-miR-181b-5p;hsa-miR-200a-5p;hsa-miR-200b-3p;hsa-miR-20a-5p;hsa-miR-301a-3p;hsa-miR-339-5p;hsa-miR-589-5p;hsa-miR-877-5p;hsa-miR-92a-3p;hsa-miR-93-5p 13 SESN3 Sponge network -4.779 0 -0.822 0.00384 0.389
15 RP11-89K21.1 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-29a-5p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-374b-5p;hsa-miR-424-5p 10 MDM4 Sponge network 4.915 0 0.734 0 0.387
16 AC074117.10 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-424-5p;hsa-miR-542-3p 10 MDM4 Sponge network 1.254 0 0.734 0 0.379
17 LINC00176 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-424-5p;hsa-miR-542-3p 10 MDM4 Sponge network 3.423 0 0.734 0 0.368
18 GS1-124K5.11 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-326;hsa-miR-3607-3p;hsa-miR-424-5p;hsa-miR-542-3p 10 MDM4 Sponge network 1.5 0 0.734 0 0.365
19 RP1-228H13.5 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30a-5p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-3607-3p;hsa-miR-542-3p 10 MDM4 Sponge network 1.554 0 0.734 0 0.363
20

MAGI2-AS3

hsa-miR-106b-5p;hsa-miR-1266-5p;hsa-miR-15b-5p;hsa-miR-17-5p;hsa-miR-19a-3p;hsa-miR-19b-1-5p;hsa-miR-19b-3p;hsa-miR-20a-5p;hsa-miR-589-3p;hsa-miR-616-5p;hsa-miR-9-5p;hsa-miR-92a-3p;hsa-miR-93-5p 13 CCND1 Sponge network -1.801 0 -0.902 1.0E-5 0.359
21 CTBP1-AS2 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-424-5p;hsa-miR-542-3p 11 MDM4 Sponge network 1.419 0 0.734 0 0.337
22 RP11-727A23.5 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30a-5p;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-542-3p 10 MDM4 Sponge network 1.435 0 0.734 0 0.327
23 SNHG7 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-424-5p;hsa-miR-542-3p 10 MDM4 Sponge network 2.077 0 0.734 0 0.322
24 ALDH1L1-AS2 hsa-let-7e-5p;hsa-miR-132-3p;hsa-miR-142-3p;hsa-miR-142-5p;hsa-miR-181a-5p;hsa-miR-21-5p;hsa-miR-212-3p;hsa-miR-23a-3p;hsa-miR-24-3p;hsa-miR-27a-3p 10 CCNG1 Sponge network 0.116 0.79006 -0.046 0.64033 0.317
25

MAGI2-AS3

hsa-miR-106b-5p;hsa-miR-130b-3p;hsa-miR-17-5p;hsa-miR-19b-1-5p;hsa-miR-20a-3p;hsa-miR-20a-5p;hsa-miR-301a-3p;hsa-miR-339-5p;hsa-miR-589-3p;hsa-miR-589-5p;hsa-miR-877-5p;hsa-miR-92a-3p;hsa-miR-93-5p 13 SESN3 Sponge network -1.801 0 -0.822 0.00384 0.314
26

RP11-166D19.1

hsa-miR-106b-5p;hsa-miR-130b-3p;hsa-miR-17-5p;hsa-miR-19b-1-5p;hsa-miR-20a-3p;hsa-miR-20a-5p;hsa-miR-301a-3p;hsa-miR-339-5p;hsa-miR-33a-5p;hsa-miR-589-3p;hsa-miR-589-5p;hsa-miR-877-5p;hsa-miR-92a-3p 13 SESN3 Sponge network -0.244 0.28835 -0.822 0.00384 0.285
27

RP11-166D19.1

hsa-miR-106b-5p;hsa-miR-130b-3p;hsa-miR-148b-3p;hsa-miR-15b-3p;hsa-miR-16-2-3p;hsa-miR-186-5p;hsa-miR-21-5p;hsa-miR-25-3p;hsa-miR-425-5p;hsa-miR-484;hsa-miR-589-3p;hsa-miR-590-5p 12 PTEN Sponge network -0.244 0.28835 -0.546 0 0.28
28 RP5-1165K10.2 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-424-5p 10 MDM4 Sponge network 1.401 0 0.734 0 0.272
29 CTD-3220F14.1 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-326;hsa-miR-3607-3p;hsa-miR-424-5p;hsa-miR-542-3p 10 MDM4 Sponge network 3.223 0 0.734 0 0.268
30 ZNRD1-AS1 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-424-5p;hsa-miR-542-3p 11 MDM4 Sponge network 1.284 0 0.734 0 0.266
31 MIR4435-1HG hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-424-5p;hsa-miR-542-3p 11 MDM4 Sponge network 2.541 0 0.734 0 0.261
32

RP11-166D19.1

hsa-miR-106a-5p;hsa-miR-106b-5p;hsa-miR-1266-5p;hsa-miR-15b-5p;hsa-miR-16-5p;hsa-miR-17-5p;hsa-miR-186-5p;hsa-miR-19a-3p;hsa-miR-19b-1-5p;hsa-miR-19b-3p;hsa-miR-20a-5p;hsa-miR-425-5p;hsa-miR-589-3p;hsa-miR-616-5p;hsa-miR-92a-3p;hsa-miR-942-5p 16 CCND1 Sponge network -0.244 0.28835 -0.902 1.0E-5 0.253
33 RP11-37B2.1 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-424-5p;hsa-miR-542-3p 11 MDM4 Sponge network 1.504 0 0.734 0 0.253
34 POLR2J4 hsa-let-7c-5p;hsa-miR-125b-2-3p;hsa-miR-142-3p;hsa-miR-144-3p;hsa-miR-152-3p;hsa-miR-30a-3p;hsa-miR-30e-3p;hsa-miR-326;hsa-miR-33b-5p;hsa-miR-3607-3p;hsa-miR-424-5p;hsa-miR-542-3p 12 MDM4 Sponge network 1.386 0 0.734 0 0.251

Quest ID: dd161a07c752ded16c5c6ec5d5a3c766